International Journal of Advanced Culture Technology
/
제5권3호
/
pp.35-39
/
2017
The human body is structured as sentence of healing. This study examines how the mechanism of healing works in the human body by the narrative relation of functor and argument. So, we predict the way of extreme healing by literary or human narrative. For this purpose, we analyze the principle that the emotional and semantic arguments are called by the functor set by the sentences containing the fingerprints of mind in Gosijo and the mechanism of healing works extensively. We analyze the process of the transition from the narrative of the literary to the narrative of the human body. Thus, the barcode of the healing, which is made up of the relationship between the functor of the literature and the argument, is transferred to the human body and it is judged that the fingerprint of the human mind is operated through the stage of encoding and re-encoding due to the action potential. In addition, it was predicted that the neurotransmitters such as dopamine and the secretion of hormones would be promoted and the healing level would be increased. In results, we conclude that the function of argument and functor which contains the fingerprint of the mind in the third sound step on the last sentence of Gosijo is transferred to the human body and is especially heavily focused and operate with healing.
문법 검사기는 문장의 문법 오류를 찾고 이에 대한 적절한 대안을 제시하는 것이다. 문법 오류를 찾기 위해서 문법 검사기는 전체 문장을 분석해야 하며 이는 많은 자원이 소요되는 작업이다. 이러한 이유로 대부분의 한국어 문법 검사기는 중의성이 없는 작은 부분에 대해서만 구문 분석을 수행하는 부분구문 분석기를 이용하고 있다. 본 논문의 구문 분석기는 문법 오류를 검사하기 위해서 전체 구문 분석기를 사용하였다. 이 방식은 여러 단어를 사이에 두고 떨어져 있는 두 단어간에 문법적 오류가 있을 경우에도 이를 찾아서 고칠 수 있다. 결과적으로 이 방식은 수행 성능을 저하시키는 대신, 문법 오류를 수정하는 정확률의 향상을 기대할 수 있다. 본 논문의 문법 검사기는 문법 오류를 찾고 수정하기 위해서 65개의규칙을 사용한다. 전체 구문 분석기를 사용하는 한국어 문법 검사기는 약 7백만 어절로 구성된 실험 코퍼스에 대해서 약 96.49%의 교정 정확률을 얻을 수 있었다.
The purpose of this study was to analyze the effects of both social-status and mode of stimulus-presentation on children's empathic behavior, where empathy is defined as either the comprehension and recognition of an affective state in stimulus persons (others) or the empathic response to that perception. Middle-and lower-class kindergarten children were presented with a series of either short-sentence stories or short-pictorial stories. The subjects were asked to indicate how the child in each situation felt by selecting a "happy", "sad", or "angry" face to complete the picture accompanying each story. Immediately following the first question, children were asked to state verbally how the child in the picture might feel. The main results were (1) The mean empathy scores for the comprehension and recognition of an affective state in others and the empathic response to that perception was higher in middle-class children than in lower-class children. (2) There were differences in empathy scores to the three affective situations, i.e. the mean score for both happiness and sadness was significantly greater than for aggression, and (3) The empathy scores in the pictorial-stories were greater than in the sentence-stories.
This paper analyzes statistically the relationship between size and balance of text corpus by evaluation of the effect of interview sentences in language model for Korean broadcast news transcription system. Our Korean broadcast news transcription system's ultimate purpose is to recognize not interview speech, but the anchor's and reporter's speech in broadcast news show. But the gathered text corpus for constructing language model consists of interview sentences a portion of the whole, $15\%$ approximately. The characteristic of interview sentence is different from the anchor's and the reporter's in one thing or another. Therefore it disturbs the anchor and reporter oriented language modeling. In this paper, we evaluate the effect of interview sentences in language model for Korean broadcast news transcription system and analyze statistically the relationship between size and balance of text corpus by making an experiment as the same procedure according to varying the size of corpus.
효과적인 분절을 통한 양질의 입력 자질 구성은 언어모델의 문장 이해력을 향상하기 위한 필수적인 단계이다. 입력 자질의 품질 제고는 세부 태스크의 성능과 직결된다. 본 논문은 단어와 문장 분류 관점에서 한국어의 언어적 특징을 효과적으로 반영하는 분절 전략을 비교 연구한다. 분절 유형은 언어학적 단위에 따라 어절, 형태소, 음절, 자모 네 가지로 분류하며, RoBERTa 모델 구조를 활용하여 사전학습을 진행한다. 각 세부 태스크를 분류 단위에 따라 문장 분류 그룹과 단어 분류 그룹으로 구분 지어 실험함으로써, 그룹 내 경향성 및 그룹 간 차이에 대한 분석을 진행한다. 실험 결과에 따르면, 문장 분류에서는 단위의 언어학적 분절 전략을 적용한 모델이 타 분절 전략 대비 최대 NSMC: +0.62%, KorNLI: +2.38%, KorSTS: +2.41% 높은 성능을, 단어 분류에서는 음절 단위의 분절 전략이 최대 NER: +0.7%, SRL: +0.61% 높은 성능을 보임으로써, 각 분류 그룹에서의 효과성을 보여준다.
Prasad et al.는 사전학습(pre-trained)한 신경망 L1 글로다바(Gulordava) 언어모델을 여러 유형의 영어 관계절과 등위절 문장들로 적응 학습(adaptation learning)시켜 문장 간 유사성(sentence similarity)을 평가할 수 있는 통사 프라이밍(syntactic priming)-기반 프로빙 방법((probing method)을 제안했다. 본 논문에서는 한국인 영어학습자가 배우는 영어 자료를 바탕으로 훈련된 L2 LSTM 신경망 언어 모델의 영어 관계절 혹은 등위절 구조의 문장들에 대한 임베딩 표현 방식을 평가하기 위하여 프로빙 방법을 적용한다. 프로빙 실험은 사전 학습한 LSTM 언어 모델을 기반으로 추가로 적응 학습을 시킨 LSTM 언어 모델을 사용하여 문장 임베딩 벡터 표현의 통사적 속성을 추적한다. 이 프로빙 실험을 위한 데이터셋은 문장의 통사 구조를 생성하는 템플릿을 사용하여 자동으로 구축했다. 특히, 프로빙 과제별 문장의 통사적 속성을 분류하기 위해 통사 프라이밍을 이용한 언어 모델의 적응 효과(adaptation effect)를 측정했다. 영어 문장에 대한 언어 모델의 적응 효과와 통사적 속성 관계를 복합적으로 통계분석하기 위해 선형 혼합효과 모형(linear mixed-effects model) 분석을 수행했다. 제안한 L2 LSTM 언어 모델이 베이스라인 L1 글로다바 언어 모델과 비교했을 때, 프로빙 과제별 동일한 양상을 공유함을 확인했다. 또한 L2 LSTM 언어 모델은 다양한 관계절 혹은 등위절이 있는 문장들을 임베딩 표현할 때 관계절 혹은 등위절 세부 유형별로 통사적 속성에 따라 계층 구조로 구분하고 있음을 확인했다.
전 세계 선박 통행량의 증가에 따른 선박 충돌 사고의 증가는 큰 경제적, 환경적, 물리적 및 인간적 손해를 가져왔다. 선박 사고의 원인은 선원의 판단 오류나 부주의, 항로의 복잡성, 기상 조건, 선박의 기술적 결함 등 다양한 요인이 겹쳐 작용하여 사고를 유발하기 때문에 문장의 깊은 의미와 문맥 정보를 고려할 수 있는 방법론이 필요하다. 따라서, 본 연구는 부산해심 지역에서의 최근 20년 동안의 선박 충돌사고 데이터를 포함하고 있는 해양안전심판 재결서를 SentenceBERT 모델을 활용해 분석하였다. 분석 결과 사고의 주요 원인이 될 수 있는 키워드가 도출되었으며, 특정 키워드 출현 빈도를 바탕으로 군집 분석을 시행하고 시각화하였다. 추후 사고의 원인을 미리 파악함으로써, 이를 통해 선박 충돌 사고의 예방 및 사고 대응 전략 개발의 기초 자료로써 활용하고자 한다.
대규모 텍스트에서 관심 대상이 가지고 있는 속성들에 대한 감성을 세부적으로 분석하는 속성기반 감성분석(Aspect-Based Sentiment Analysis)은 상당한 비즈니스 가치를 제공한다. 특히, 텍스트에 속성어가 존재하는 명시적 속성뿐만 아니라 속성어가 없는 암시적 속성까지 분석 대상으로 하는 속성카테고리 감성분류(ACSC, Aspect Category Sentiment Classification)는 속성기반 감성분석에서 중요한 의미를 지니고 있다. 본 연구는 속성카테고리 감성분류에 BERT 사전훈련 언어 모델을 적용할 때 기존 연구에서 다루지 않은 다음과 같은 주요 이슈들에 대한 답을 찾고, 이를 통해 우수한 ACSC 모델 구조를 도출하고자 한다. 첫째, [CLS] 토큰의 출력 벡터만 분류벡터로 사용하기보다는 속성카테고리에 대한 토큰들의 출력 벡터를 분류벡터에 반영하면 더 나은 성능을 달성할 수 있지 않을까? 둘째, 입력 데이터의 문장-쌍(sentence-pair) 구성에서 QA(Question Answering)와 NLI(Natural Language Inference) 타입 간 성능 차이가 존재할까? 셋째, 입력 데이터의 QA 또는 NLI 타입 문장-쌍 구성에서 속성카테고리를 포함한 문장의 순서에 따른 성능 차이가 존재할까? 이러한 연구 목적을 달성하기 위해 입력 및 출력 옵션들의 조합에 따라 12가지 ACSC 모델들을 구현하고 4종 영어 벤치마크 데이터셋에 대한 실험을 통해 기존 모델 이상의 성능을 제공하는 ACSC 모델들을 도출하였다. 그리고 [CLS] 토큰에 대한 출력 벡터를 분류벡터로 사용하기 보다는 속성카테고리 토큰의 출력 벡터를 사용하거나 두 가지를 함께 사용하는 것이 더욱 효과적이고, NLI 보다는 QA 타입의 입력이 대체적으로 더 나은 성능을 제공하며, QA 타입 안에서 속성이 포함된 문장의 순서는 성능과 무관한 점 등의 유용한 시사점들을 발견하였다. 본 연구에서 사용한 ACSC 모델 디자인을 위한 방법론은 다른 연구에도 비슷하게 응용될 수 있을 것으로 기대된다.
모바일 기기는 사용자가 늘 지니고 다니기 때문에 사용자의 주변 환경이나 행동 양상에 대한 매우 유용한 정보를 얻을 수 있다. 본 논문에서는 이들 정보를 하루 단위로 수집하여 하룻동안에 있었던 사용자의 행동에 대한 주제를 추출하고 이를 이용해 자동으로 일기를 생성하는 방법을 제안한다. 이를 위해 (1) 모바일 기기에서 사용자 행동 양상에 대한 정보를 모두 수집하고 (2) 수집한 정보로부터 개체명과 주제 연관 정보를 추출해 사용자가 그 날 있었던 일에 대한 주제를 추출한다. (3) (2)의 결과로부터 주제와 연관된 사건인 에피소드를 결정하고 (4) 문장 템플릿을 이용하여 문장을 생성한 후, 주제별 혹은 시간별로 스토리를 구성한다. 본 논문에서 제안한 방법은 기존의 방법보다 간단하기 때문에 모바일 기기 내에서도 수행이 가능하므로 개인 정보를 유출할 수 있는 문제를 최소화 할 수 있다. 또한, 본 논문에서는 문장의 형태로 정보를 제공하기 때문에 보다 많은 정보를 표현할 수 있다. 그리고 문장 생성 과정에 생성되는 주제 정보는 사용자의 행동 양상을 파악하는 자료로 이용할 수 있으므로 이를 바탕으로 한 사용자 맞춤형 서비스를 제공하는데 도움을 줄 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.