This letter introduces a new method to automatically acquire paraphrases using bilingual corpora. It utilizes the bilingual dependency relations obtained by projecting a monolingual dependency parse onto the other language's sentence based on statistical alignment techniques. Since the proposed paraphrasing method can clearly disambiguate the sense of the original phrases using the bilingual context of dependency relations, it would be possible to obtain interchangeable paraphrases under a given context. Through experiments with parallel corpora of Korean and English language pairs, we demonstrate that our method effectively extracts paraphrases with high precision, achieving success rates of 94.3% and 84.6%, respectively, for Korean and English.
Proceedings of the Korean Society for Emotion and Sensibility Conference
/
2008.10a
/
pp.90-93
/
2008
In natural language, it is common that repetitive constituents in an expression are to be left out and it is necessary to figure out the constituents omitted at analyzing the meaning of the sentence. This paper is on recognition of boundaries of parallel noun phrases by figuring out constituents omitted. Recognition of parallel noun phrases can greatly reduce complexity at the phase of sentence parsing. Moreover, in natural language information retrieval, recognition of noun with modifiers can play an important role in making indexes. We propose an unsupervised probabilistic model that identifies parallel cores as well as boundaries of parallel noun phrases conjoined by a conjunctive particle. It is based on the idea of swapping constituents, utilizing symmetry (two or more identical constituents are repeated) and reversibility (the order of constituents is changeable) in parallel structure. Semantic features of the modifiers around parallel noun phrase, are also used the probabilistic swapping model. The model is language-independent and in this paper presented on parallel noun phrases in Korean language. Experiment shows that our probabilistic model outperforms symmetry-based model and supervised machine learning based approaches.
Proceedings of the Korean Society for Language and Information Conference
/
2002.02a
/
pp.249-258
/
2002
We propose an algorithm for the automatic acquisition of a bilingual lexicon in the legal domain. We make use of a parallel corpus of bilingual court judgments, aligned to the sentence level, and analyse the bilingual context profiles to extract corresponding legal terms in both languages. Our method is different from those in past studies as it does not require any prior knowledge source, and naturally extends to multi-word terms in either language. A pilot test was done with a sample of ten legal terms, each with ten or more occurrences in the data. Encouraging results of about 75% average accuracy were obtained. This figure does not only reflect the effectiveness of the method for bilingual lexicon acquisition, but also its potential for bilingual alignment at the word or expression level.
International Journal of Control, Automation, and Systems
/
v.5
no.1
/
pp.99-103
/
2007
Translation equivalence is very important for bilingual lexicography, machine translation system and cross-lingual information retrieval. Extraction of equivalences from bilingual sentence pairs belongs to data mining problem. In this paper, discriminative learning methods are employed to filter translation equivalences. Discriminative features including translation literality, phrase alignment probability, and phrase length ratio are used to evaluate equivalences. 1000 equivalences randomly selected are filtered and then evaluated. Experimental results indicate that its precision is 87.8% and recall is 89.8% for support vector machine.
Annual Conference on Human and Language Technology
/
1999.10e
/
pp.150-155
/
1999
다국어를 이용한 통계적 자연어 처리의 연구가 진행됨에 따라 병렬 말뭉치의 중요성이 대두되고 있다. 그러나 여러 가지 제약점으로 인하여 현재 이용 가능한 한국어 병렬 말뭉치가 드문 상황이다. 월드 와이드 웹 상에는 다양한 언어로 번역된 문서들이 있으며 이를 병렬 말뭉치로 구축, 활용한다면 말뭉치의 희소성으로 인한 문제를 해결할 수 있다. 본 논문에서는 웹 상에서 번역문서 후보를 추출한 다음 HTML 문서 구조를 비교하여 번역문서인지를 판별하고 문장 단위 정렬을 이용하여 병렬 말뭉치로 구축하는 방법을 제시한다.
Seo, Hyung-Won;Kim, Hyung-Chul;Cho, Hee-Young;Kim, Jae-Hoon;Yang, Sung-Il
Proceedings of the Korea Information Processing Society Conference
/
2006.11a
/
pp.161-164
/
2006
인터넷이 발전하면서 웹에는 같은 내용을 다양한 언어로 표현한 문서들이 많이 존재한다. 이와 같은 웹 문서의 성질을 이용하여, 이 논문은 웹으로부터 수집된 병렬문서(parallel document)를 이용하여 한영 병렬말뭉치 구축 시스템을 설계하고 구현한다. 이 논문에서 구축과정을 요약하면 다음과 같다. 첫째, 웹 문서수집기를 이용해서 웹으로부터 한영 웹문서(html 문서)를 각각 수집한다. 둘째, 수집된 각 언어의 웹 문서에서 불필요한 내용(태그와 광고 문구 등)을 제거하여 문장을 추출하고, 추출된 문장을 단락단위로 정렬한다. 셋째, 단락단위로 정렬된 문서를 문장정렬(sentence alignment) 방법을 이용해서 문장을 정렬한다. 끝으로 정렬된 병렬문장을 단어 단위로 분리하여 병렬말뭉치를 구축한다. 이와 같은 방법으로 이 논문에서는 약 42만 5천 문장의 한영 병렬말뭉치를 구축하였다.
Annual Conference on Human and Language Technology
/
2010.10a
/
pp.130-135
/
2010
문장 정렬은 두 개의 문서 간의 대응이 되는 문장을 찾는 작업이다. 이 방법은 통계적 기계 번역의 학습 문서인 병렬 말뭉치를 자동으로 구축하는데 필수적인 방법이다. 본 연구에서는 길이 정보에 추가적으로 유사도 정보를 반영하는 한영 문장 정렬 방법을 제안한다. 먼저 한국어로 된 문서를 기계번역 시스템에 적용하여 영어 문서로 변환한다. 그리고 번역된 영어로 된 문서 결과와 영어로 된 대상 문서 간의 정렬 작업을 수행한다. 정렬 완료된 결과와 원시 문서, 대상 문서로부터 최종적인 결과를 생성해낸다. 본 논문에서는 기계 번역을 이용하는 방법과 더불어 기존의 길이 기반 문장 정렬 프로그램에 문장 유사도 정보를 추가하여 단어 정렬의 성능 향상을 꾀하였다. 그 결과 "21세기 세종기획"의 최종 배포본 내에 포함된 한영 병렬 말뭉치에 대해 한영 문장 정렬 F-1 자질의 결과가 89.39%를 보였다. 이 수치는 기존의 길이 기반의 단어 정렬의 성능 평가 결과와 비교했을 때 약 8.5% 가량 성능이 향상되었다.
Un Koaunghi;Hong Jungha;You Seok-Hoon;Lee Kiyong;Choe Jae-Woong
Language and Information
/
v.9
no.2
/
pp.49-68
/
2005
Application of chunking to English and some other European languages has shown that it is a viable parsing mechanism for natural languages. Although a small number of attempts have been made to apply chunking to the analysis of the Korean language, it still is not clear enough what criteria there are to identify appropriate units of chunking, and how efficient and valid the chunking algorithms would be when applied to some authentic Korean texts. The purpose of this research is to provide an alternative set of algorithms for chunking Korean, and to implement them, and to test them against some English-Korean parallel corpora, which is English and Korean bibles matched sentence by sentence. It is shown in the paper that aligning related texts and identifying matched phrases between the two languages can be achieved through appropriate chunking and matching algorithms defined on the morphologically-tagged parallel corpus. Chunking and matching processes are based on the content words rather than the function words, and the matching itself is done in terms of the transfer dictionary. The implementation is done in C and XML, and can be accessed through the Internet.
Recently, as word embedding has shown excellent performance in various tasks of deep learning-based natural language processing, researches on the advancement and application of word, sentence, and document embedding are being actively conducted. Among them, cross-language transfer, which enables semantic exchange between different languages, is growing simultaneously with the development of embedding models. Academia's interests in vector alignment are growing with the expectation that it can be applied to various embedding-based analysis. In particular, vector alignment is expected to be applied to mapping between specialized domains and generalized domains. In other words, it is expected that it will be possible to map the vocabulary of specialized fields such as R&D, medicine, and law into the space of the pre-trained language model learned with huge volume of general-purpose documents, or provide a clue for mapping vocabulary between mutually different specialized fields. However, since linear-based vector alignment which has been mainly studied in academia basically assumes statistical linearity, it tends to simplify the vector space. This essentially assumes that different types of vector spaces are geometrically similar, which yields a limitation that it causes inevitable distortion in the alignment process. To overcome this limitation, we propose a deep learning-based vector alignment methodology that effectively learns the nonlinearity of data. The proposed methodology consists of sequential learning of a skip-connected autoencoder and a regression model to align the specialized word embedding expressed in each space to the general embedding space. Finally, through the inference of the two trained models, the specialized vocabulary can be aligned in the general space. To verify the performance of the proposed methodology, an experiment was performed on a total of 77,578 documents in the field of 'health care' among national R&D tasks performed from 2011 to 2020. As a result, it was confirmed that the proposed methodology showed superior performance in terms of cosine similarity compared to the existing linear vector alignment.
Park, Esther;Lee, Hyoung-Gyu;Kim, Min-Jeong;Rim, Hae-Chang
Korean Journal of Cognitive Science
/
v.22
no.1
/
pp.57-78
/
2011
Paraphrasing is the act of writing a text using other words without altering the meaning. Paraphrases can be used in many fields of natural language processing. In particular, paraphrases can be incorporated in machine translation in order to improve the coverage and the quality of translation. Recently, the approaches on paraphrase extraction utilize bilingual parallel corpora, which consist of aligned sentence pairs. In these approaches, paraphrases are identified, from the word alignment result, by pivot phrases which are the phrases in one language to which two or more phrases are connected in the other language. However, the word alignment is itself a very difficult task, so there can be many alignment errors. Moreover, the alignment errors can lead to the problem of selecting incorrect pivot phrases. In this study, we propose a method in paraphrase extraction that discriminates good pivot phrases from bad pivot phrases. Each pivot phrase is weighted according to its reliability, which is scored by considering the lexical and part-of-speech information. The experimental result shows that the proposed method achieves higher precision and recall of the paraphrase extraction than the baseline. Also, we show that the extracted paraphrases can increase the coverage of the Korean-English machine translation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.