• Title/Summary/Keyword: Sensory Traits

Search Result 156, Processing Time 0.025 seconds

Genome-wide association study for the free amino acid and nucleotide components of breast meat in an F2 crossbred chicken population

  • Minjun Kim;Eunjin Cho;Jean Pierre Munyaneza;Thisarani Kalhari Ediriweera;Jihye Cha;Daehyeok Jin;Sunghyun Cho;Jun Heon Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • Flavor is an important sensory trait of chicken meat. The free amino acid (FAA) and nucleotide (NT) components of meat are major factors affecting meat flavor during the cooking process. As a genetic approach to improve meat flavor, we performed a genome-wide association study (GWAS) to identify the potential candidate genes related to the FAA and NT components of chicken breast meat. Measurements of FAA and NT components were recorded at the age of 10 weeks from 764 and 767 birds, respectively, using a White leghorn and Yeonsan ogye crossbred F2 chicken population. For genotyping, we used 60K Illumina single-nucleotide polymorphism (SNP) chips. We found a total of nine significant SNPs for five FAA traits (arginine, glycine, lysine, threonine content, and the essential FAAs and one NT trait (inosine content), and six significant genomic regions were identified, including three regions shared among the essential FAAs, arginine, and inosine content traits. A list of potential candidate genes in significant genomic regions was detected, including the KCNRG, KCNIP4, HOXA3, THSD7B, and MMUT genes. The essential FAAs had significant gene regions the same as arginine. The genes related to arginine content were involved in nitric oxide metabolism, while the inosine content was possibly affected by insulin activity. Moreover, the threonine content could be related to methylmalonyl-CoA mutase. The genes and SNPs identified in this study might be useful markers in chicken selection and breeding for chicken meat flavor.

Effects of carcass weight increase on meat quality and sensory properties of pork loin

  • Hwang, Young-Hwa;Lee, Se-Jin;Lee, Eun-Yeong;Joo, Seon-Tea
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.753-760
    • /
    • 2020
  • The objective of this study was to investigate the influence of increasing carcass weight (CW) on meat quality traits including meat color, water-holding capacity (WHC), tenderness, backfat thickness and intramuscular fat (IMF) content of pork loin. A total of 96 pork carcasses (48 LYD [Landrace × Yorkshire × Duroc] barrows and gilts) were selected at a commercial slaughterhouse. Each gender had commercial CW (≤ 90 kg), heavy CW (91-100 kg) and very heavy CW (> 100 kg) (16 carcasses from each CW group). Loin cuts (Longissimus lumborum) were excised to investigate meat color (CIE L*a*b*), drip loss, cooking loss, released water, Warner-Bratzler shear force (WBSF), and IMF content. Backfat thickness and IMF content of pork loin samples were significantly (p < 0.05) increased with increasing CW, although there was no significant difference in ultimate pH (pHu). CIE a* increased significantly (p < 0.05) with increasing CW, while there were no significant differences in CIE L* or CIE b* among CW groups. Although all WHC measures showed no significant differences among CW groups, WBSF increased significantly (p < 0.01) with increasing CW. Sensory flavor score was significantly increased while panel score for tenderness was decreased significantly (p < 0.001) with increasing CW. Consequently, CW had a positive correlation with flavor but negative correlation with tenderness. These results indicate that the increased IMF content improves flavor, juiciness and palatability, although tenderness deteriorates with increasing CW.

The Assessment of Red Beet as a Natural Colorant, and Evaluation of Quality Properties of Emulsified Pork Sausage Containing Red Beet Powder during Cold Storage

  • Jin, Sang-Keun;Choi, Jung-Seok;Moon, Sung-Sil;Jeong, Jin-Yeon;Kim, Gap-Don
    • Food Science of Animal Resources
    • /
    • v.34 no.4
    • /
    • pp.472-481
    • /
    • 2014
  • The purpose of this study was to assess red beet as a natural colorant in emulsified pork sausage and to investigate the effect of red beet on quality characteristics of emulsified pork sausage during 20 d of cold storage. Red beet was prepared as a powder and a substitute with sodium nitrite at 0.5% and 1.0% levels in emulsified pork sausage. Red beet significantly increased the moisture content and pH (p<0.0001) and affected color traits. Lightness of emulsified pork sausage decreased by the addition of red beet powder (p<0.01), whereas lightness with red beet treatments slightly increased during 20 d of cold storage at $4^{\circ}C$ (p<0.05). Redness dramatically increased with red beet powder (p<0.0001). Color by sensory evaluation also showed a significant effect from red beet addition (p<0.05), whereas the other sensory properties such as flavor, tenderness, juiciness, and overall acceptability were not affected by the addition of red beet powder (p>0.05). Texture and 2-thiobabituric acid reactive substance were also not affected by red beet addition (p>0.05). Therefore, red beet could be a good natural colorant in emulsified pork sausage but it needs additional processing, such as betalain concentration and extraction as a juice, to be used as an antioxidant in meat products.

Prevalence of pale, soft, and exudative (PSE) condition in chicken meat used for commercial meat processing and its effect on roasted chicken breast

  • Karunanayaka, Deshani S.;Jayasena, Dinesh D.;Jo, Cheorun
    • Journal of Animal Science and Technology
    • /
    • v.58 no.7
    • /
    • pp.27.1-27.8
    • /
    • 2016
  • Background: Studies on prevalence of pale, soft, exudative (PSE) condition in Sri Lankan poultry industry is minimal. Hence, the objective of present study was to determine the incidence of PSE chicken meat in a commercial meat processing plant and to find out its consequences on meat quality traits of roasted chicken breast. Method: A total of 60 breast fillets were randomly selected, evaluated based on color L* value, and placed into 1 of 2 categories; PSE (L* > 58) or normal meat ($L*{\leq}58$). A total of 20 breast fillets (10 PSE and 10 normal) were then analyzed for color, pH, and water holding capacity (WHC). After processing those into roasted chicken breast, cooking loss, color, pH, WHC, and texture values were evaluated. A sensory evaluation was conducted using 30 untrained panelists. Results: The incidence of PSE meat was 70 % in the present experiment. PSE fillets were significantly lighter and had lower pH values compared with normal fillets. Correlation between the lightness and pH was negative (P < 0.05). Although there was no significant difference in color, texture, and WHC values between the 2 groups after processing into roasted chicken breast (P > 0.05), an approximately 3 % higher cooking loss was observed in PSE group compared to its counterpart (P < 0.05). Moreover, cooking loss and lightness values showed a significant positive correlation. Nevertheless, there were no significant differences in sensory parameters between the 2 products (P > 0.05). Conclusions: These results indicated that an economical loss can be expected due to the significantly higher cooking loss observed in roasted breast processed from PSE meat.

Effects of Addition of Tomato Powder on Colour, Antioxidant, and Antimicrobial Traits of Pork Jerky during Storage

  • Kim, Il-Suk;Jin, Sang-Keun;Jo, Cheorun;Lee, Mooha;Yang, Mi-Ra;Kim, Ji-Hye;Kang, Suk-Nam
    • Food Science of Animal Resources
    • /
    • v.32 no.6
    • /
    • pp.718-724
    • /
    • 2012
  • The aim of this study was to investigate the effects of the addition of tomato powder [1.0% (T1), 1.5% (T2) and 2.0% (T3)] on pork loin jerky with aerobic package during storage at room temperature. The T3 sample showed lower (p<0.05) pH value and higher (p<0.05) water activity than the control during storage. Total plate counts of treated samples (${\geq}1.20$ Log CFU/g) were significantly (p<0.05) lower than the control (1.46 Log CFU/g) during storage. With the increase of the tomato powder concentration the lightness ($L^*$) of the jerky decreased, except at day 30 of storage, but the redness ($a^*$) and yellowness ($b^*$) increased significantly (p<0.05) during storage. T3 had higher values for hardness and cohesiveness but lower for springiness, gumminess and chewiness than others at day 40 of storage. However, there were no significant differences in TBARS values among the samples during storage. In sensory properties, the color scores of T3 was significantly (p<0.05) higher than that of control at day 40 of storage. These results suggested that 2.0% tomato powder could be used to improve the redness and extend the shelf-life of jerky with increasing water activity, providing the consumer with food containing natural colorant.

Physicochemical Traits, Fatty Acid and Free Amino Acid Compositions of Two-way Crossbred Pork Belly

  • Lim, Dong-Gyun;Kim, Kyung-Tai;Lee, Kyung-Haeng;Seo, Kang-Seok;Nam, Ki-Chang
    • Food Science of Animal Resources
    • /
    • v.33 no.2
    • /
    • pp.189-197
    • /
    • 2013
  • This study was conducted to determine the meat quality characteristics of pork belly from 3 different two-way crossbreeds of Yorkshire${\times}$Landrace (YL), Yorkshire${\times}$Berkshire (YB), and Yorkshire${\times}$Chester White (YC), which were domesticated for Korean consumers. Twenty pigs from each crossbreed (total n=60) were randomly selected when they reached the 110-120 kg range of market weight, slaughtered, and cooled at $0^{\circ}C$ for 24 h. The pork bellies on the left side of the cooled carcasses were then sampled and analyzed. The pH of pork bellies was the lowest in YC among the crossbreds. There was no significant difference in fat content by crossbred, but YB bellies had the lowest moisture content (p<0.05). The cooking loss of YB bellies was lower than those of others (p<0.05). The TBARS values in YB was significantly higher than those of the others at 14 d. YL bellies had a higher percentage of stearic acid, oleic acid, and MUFA than the other breeds, while YB and YC had a higher percentage of myristic acid, linoleic acid, linolenic acid, and n-6 fatty acids than the YB (p<0.05). PUFA content and P/S were significantly higher in YC compared with YL. Except for arginine, the concentrations of most free amino acids were higher in YB bellies than in others, (p<0.05). Sensory evaluation scores of bellies were higher for YC than for other breeds (p<0.05).

Determination of Point of Sale and Consumption for Hanwoo Beef Based on Quality Grade and Aging Time

  • Koh, Kyung Chul;Chung, Ku-Yong;Kim, Hyun-Seok;Kang, Se-Joo;Choi, Chang-Bon;Jo, Cheorun;Choe, Juhui
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.139-150
    • /
    • 2019
  • This study aimed to determine the suitable point of sale and consumption of different quality grade (QG) Hanwoo short loin during aging period, based on physicochemical, sensory, and microbiological quality. Short loins obtained from the carcasses of 13 Hanwoo steers and 2 bulls with 5 different QGs (1++, 1+, 1, 2, and 3) were analyzed over 28 d. QG and aging time had significant effect on water holding capacity, color, shear force, total volatile basic nitrogen (TVBN) content, and sensory traits. Higher QG groups generally exhibited a lower shear force, nucleotide content, and water holding capacity, and higher $L^*$, $a^*$, and $b^*$ values. Acceptable tenderness (shear force <5.4 kg) in QG 1++, 1+, 1, and 2 was achieved on days 7, 14, 16, and 18, respectively, and QG 3 showed a shear force of 6.8 kg, even after 28 d. Regardless of QG, TVBN content below threshold levels (20-30 mg%) was observed throughout the 28 d aging period, while total plate counts above 7 Log CFU/g were seen at 21 d. In conclusion, it is recommended that Hanwoo beef with QG 1++, 1+, and intermediate QG (1 and 2) should be sold or consumed between 7 and 21, 14 and 21, 16 and 21 d, respectively. Beef with QG 3 should be sold or consumed within 21 d, based on microbial growth, even though it has not achieved desirable tenderness. For this reason, an additional tenderizing process is recommended before this beef is ready for consumption.

Investigation of Physicochemical and Sensory Quality Differences in Pork Belly and Shoulder Butt Cuts with Different Quality Grades

  • Hoa, Van-Ba;Seol, Kukhwan;Seo, Hyunwoo;Kang, Sunmoon;Kim, Yunseok;Seong, Pilnam;Moon, Sungsil;Kim, Jinhyoung;Cho, Soohyun
    • Food Science of Animal Resources
    • /
    • v.41 no.2
    • /
    • pp.224-236
    • /
    • 2021
  • The objective of this study was to investigate the effects of quality grade (QG) on the physicochemical composition and eating quality attributes of pork belly and shoulder butt. Seventy-two growing-finishing crossbred pigs were slaughtered and their carcasses were graded according to the Korean pork carcass grading system. Based on the grading criteria, the carcasses were classified into: QG 1+ (n=23), QG 1 (n=23) and QG 2 (n=26) groups. At 24 h postmortem, belly and shoulder butt cuts were collected from the QG groups and used for analysis of meat quality, flavor compounds and eating quality attributes. Results showed that the variation in fat content among QG was approximately 2% in the both cut types. The QG showed no effects on all the quality traits: cooking loss, pH and color of the belly or shoulder butt (p>0.05). Thirty-five flavor compounds comprising mainly fatty acids oxidation/degradation-derived products (e.g., aldehydes) and only few Maillard reaction-derived products (e.g., sulfur-and nitrogen-containing compounds) were identified. However, the QG showed a minor effect on the flavor profiles in both the belly and shoulder butt. Regarding the sensory quality, no effects of the QG were found on all the eating quality attributes (color, flavor, juiciness, tenderness and acceptability) for both the belly and shoulder butt cuts (p>0.05). Thus, it may be concluded that the current pork carcass grading standards do not reflect the real quality and value of the belly and shoulder butt cuts.

Effect of Modified Atmosphere Packaging Varying in CO2 and N2 Composition on Quality Characteristics of Dry Fermented Sausage during Refrigeration Storage

  • Ameer, Ammara;Seleshe, Semeneh;Kang, Suk Nam
    • Food Science of Animal Resources
    • /
    • v.42 no.4
    • /
    • pp.639-654
    • /
    • 2022
  • The current study investigated the effects of the most suitable modified atmosphere packaging (MAP) on the physicochemical, microbiological, and sensory properties of fermented dry sausages during 45 days of refrigeration (4℃) storage period. Treatments were vacuum-packed (control), 25% CO2/75% N2 (MAP1), 50% CO2/50% N2 (MAP2), 70% CO2/30% N2 (MAP3), and 100% CO2 (MAP4). All MAP samples regardless of their CO2 composition significantly (p<0.05) decreased in pH, aw, total plate count, and lactic acid bacteria count values as compared to the vacuum-package during storage. The Enterobacteriaceae count in all MAP packaging was significantly (p<0.05) lower than the vacuum-packed samples and counts in MAP3 and MAP4 samples were markedly (p<0.05) lower than all other treatments in prolonged storage of 15 and 45 days. Based on the thiobarbituric acid reactive substance content at day 15 and 30 storage time, treatments are ranked as follows: Vacuum-packed>MAP1>MAP2>MAP3>MAP4. The a* of MAP4 was higher than all other treatments. In the final storage days, no variation was exhibited (p>0.05) among treatments in lactic acid aroma and sourness, and MAP2 samples had the lowest (p<0.05) overall acceptability. The use of MAPs with an increase in the CO2 from MAP1 to MAP4 samples can help in better microbial inhibition than vacuum package, and 70% CO2/30% N2 (MAP3) and 100% CO2 (MAP4) were effective to maintain several quality parameters (aw, pH, microbial inhibition, stability against lipid oxidation, and instrumental color traits) and extend the shelf life of dry fermented sausage.

Oxidative Stability of Vacuum-Packed Chicken Wings Marinated with Fruit Juices during Frozen Storage

  • Rupasinghe, Rashmi A.;Alahakoon, Amali U.;Alakolanga, Achala W.;Jayasena, Dinesh D.;Jo, Cheorun
    • Food Science of Animal Resources
    • /
    • v.42 no.1
    • /
    • pp.61-72
    • /
    • 2022
  • Antioxidants present in fruits and vegetables have a potential to reduce disease risk, and increase the shelf life of food products by reducing lipid oxidation. The effect of marination with antioxidants-rich fruit juices on quality characteristics of vacuum-packed chicken wings were examined during frozen storage. Chicken wings were mixed separately with marinades containing pineapple juice, June plum juice, and mango juice and kept for 12 h and 24 h. Three best marination conditions were selected based on a sensory evaluation. Antioxidant activity and total phenolic content of fruit juices, and marinade uptake, and marinade loss of marinated chicken wings were determined. In addition, vacuum packed marinated chicken wings were tested for pH, water holding capacity (WHC), 2-thiobarbituric acid reactive substances (TBARS) value and antioxidant activity over a 4-wk frozen storage. The best sensory properties were reported from chicken wings marinated with pineapple juice for 24 h, mango juice for 24 h, and June plum juice for 12 h (p<0.05) compared to other marinade-time combinations. Mango juice showed the highest antioxidant activity (92.2%) and total phenolic content (38.45 ㎍/mL; p<0.05) compared to other fruit juices. The pH and WHC of vacuumpacked chicken wings were slightly decreased over the frozen storage (p<0.05). Moreover, chicken wings marinated with mango juice had the lowest TBARS values and the highest 2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical scavenging activity. In conclusion, mango juice was selected among tested as the most effective marinade for enhancing the oxidative stability of lipid while maintaining the other meat quality traits of vacuum-packed chicken wings.