• Title/Summary/Keyword: Sensory Evoked Potentials.

Search Result 27, Processing Time 0.021 seconds

A study on the analysis of evoked potentials using wavelet transform (Wavelet 변환을 이용한 유발전위뇌파의 해석에 관한 연구)

  • Lee, Y.H.;Choi, K.H.;Lee, D.G.;You, S.Y.;Lee, E.G.;Kim, S.I.;Lee, D.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.14-17
    • /
    • 1996
  • Evoked Potentials signals occur as a result of neuroelectric responses of the brain to sensory stimulation. In this paper, to analysis such signals we utilize a time-frequency analysis technique called wavelet transform. The wavelet analysis is performed based on a single prototype function,which can be thought of as a bandpass filter. Because the wavelet transform in a fine temporal analysis decomposes time-varying signals in EP into a dilated lowpass and a contracted highpass components, EP signal fetures can be obtained and analysed quantitatively at the levels of resolution. In the results, we analyze the VEP signal with the wavelet transform.

  • PDF

The Impact of Optical Illusions on the Vestibular System

  • Ozturk, Seyma Tugba;Serbetcioglu, Mustafa Bulent;Ersin, Kerem;Yilmaz, Oguz
    • Journal of Audiology & Otology
    • /
    • v.25 no.3
    • /
    • pp.152-158
    • /
    • 2021
  • Background and Objectives: Balance control is maintained in stationary and dynamic conditions, with coordinated muscle responses generated by somatosensory, vestibular, and visual inputs. This study aimed to investigate how the vestibular system is affected in the presence of an optical illusion to better understand the interconnected pathways of the visual and vestibular systems. Subjects and Methods: The study involved 54 young adults (27 males and 27 females) aged 18-25 years. The recruited participants were subjected to the cervical vestibular evoked myogenic potentials (cVEMP) test and video head impulse test (vHIT). The cVEMP and vHIT tests were performed once each in the absence and presence of an optical illusion. In addition, after each test, whether the individuals felt balanced was determined using a questionnaire. Results: cVEMP results in the presence of the optical illusion showed shortened latencies and increased amplitudes for the left side in comparison to the results in the absence of the optical illusion (p≤0.05). When vHIT results were compared, it was seen that the right lateral and bilateral anterior canal gains were increased, almost to 1.0 (p<0.05). Conclusions: It is thought that when the visual-vestibular inputs are incompatible with each other, the sensory reweighting mechanism is activated, and this mechanism strengthens the more reliable (vestibular) inputs, while suppressing the less reliable (visual) inputs. As long as the incompatible condition persists, the sensory reweighting mechanism will continue to operate, thanks to the feedback loop from the efferent vestibular system.

The Impact of Optical Illusions on the Vestibular System

  • Ozturk, Seyma Tugba;Serbetcioglu, Mustafa Bulent;Ersin, Kerem;Yilmaz, Oguz
    • Korean Journal of Audiology
    • /
    • v.25 no.3
    • /
    • pp.152-158
    • /
    • 2021
  • Background and Objectives: Balance control is maintained in stationary and dynamic conditions, with coordinated muscle responses generated by somatosensory, vestibular, and visual inputs. This study aimed to investigate how the vestibular system is affected in the presence of an optical illusion to better understand the interconnected pathways of the visual and vestibular systems. Subjects and Methods: The study involved 54 young adults (27 males and 27 females) aged 18-25 years. The recruited participants were subjected to the cervical vestibular evoked myogenic potentials (cVEMP) test and video head impulse test (vHIT). The cVEMP and vHIT tests were performed once each in the absence and presence of an optical illusion. In addition, after each test, whether the individuals felt balanced was determined using a questionnaire. Results: cVEMP results in the presence of the optical illusion showed shortened latencies and increased amplitudes for the left side in comparison to the results in the absence of the optical illusion (p≤0.05). When vHIT results were compared, it was seen that the right lateral and bilateral anterior canal gains were increased, almost to 1.0 (p<0.05). Conclusions: It is thought that when the visual-vestibular inputs are incompatible with each other, the sensory reweighting mechanism is activated, and this mechanism strengthens the more reliable (vestibular) inputs, while suppressing the less reliable (visual) inputs. As long as the incompatible condition persists, the sensory reweighting mechanism will continue to operate, thanks to the feedback loop from the efferent vestibular system.

Characteristics of Trigeminal Evoked Potential and It's Pathway in the Rat (백서에서 삼차신경 유발전위의 특성과 경로 분석)

  • Kim, Se-Hyuk;Zhao, Chun-Zhi;Kwon, Oh-Kyoo;Lee, Bae-Hwan;Park, Yong-Gou;Chung, Sang-Sup
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.8
    • /
    • pp.985-994
    • /
    • 2000
  • Objective : There are some advantages of trigeminal evoked potential(TEP) recording compared to other somatosensory evoked potential(SSEP) recordings. The trigeminal sensory pathway has a pure sensory nerve branch, a broader receptive field in cerebral cortex, and a shorter pathway. Despite these advantages, there is little agreement as to what constitutes a normal response and what wave forms truly characterize the intraoperative TEP. This study presents the normative data of TEP recorded on the epidural surface of the rat with a platinum ball electrode. Materials & Methods : Under general anesthesia with urethane, the adult Sprague-Dawley male rats(300-350g) were given electrical stimulation with two stainless steel electrodes which were inserted into the subcutaneous layer of the area around whiskers. A reference electrode was positioned in the temporalis muscle ipsilateral to the recording site. Results : TEPs were recorded in the Par I area of somatosensory cortex and recorded most apparently on the point of 2mm posterior from the bregma and 6mm lateral from the midline. The typical wave form consisted of 5 peaks (N1-P1-N2-P2-N3 according to emerging order, upward negativity). Each latency to corresponding peaks was not influenced by the different intensities of stimulation, especially from 1 to 5mA. Average latencies of 5 peaks were in the following order ; 7.7, 11.1, 15, 22.3, 29.4ms. There was also no significant difference between latencies before and after administration of muscle relaxant(pancuronium). For the electrophysiological localization of recorded waves, the action potential of a single unit was recorded with glass microelectrode(filled with 2M NaCl, $3-5M{\Omega}$) in the thalamus of rat. A sharp wave was recorded in the VPM nucleus, in which the latency was shorter than that of N1. This suggests that all 5 peaks were generated by neural activities in the suprathalamic pathway. Conclusion : In terms of recording near-field potentials, our data also suggests that TEP in the rat may be superior to other SSEPs. In overall, these results may afford normative data for the studies of supratentorial lesions such as hydrocephalus or cerebral ischemia which can have an influence on near-field potentials.

  • PDF

Posterior Tibial Nerve Somatosensory Evoked Potentials Recorded on Subdural Electrodes around Paracentral Lobule (부중심소엽 주변 경막하 전극들에서 기록된 후경골신경 체성감각유발전위)

  • Seo, Dae Won
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.2
    • /
    • pp.112-117
    • /
    • 1999
  • Background : Posterior tibial nerve somatosensory evoked potentials (PTSEP) have cortical potentials on primary sensory area of foot around 40 msec. The direct cortical recordings of the cortical potentials shows high voltage positive wave on medial hemisphere, especially on paracentral lobule (PCL). However, it is so difficult to record the potential directly on PCL that the cortical potential of PTSEP is not well understood. We investigated the cortical potential of PTSEP on subdural electrodes. Methods : We recorded cortical potentials to posterior tibial nerve stimulation on subdural electrodes which were on medial hemisphere near PCL in 15 intractable neocortical epilepsy patients. The numbers of subdural electrodes were 8 in 10 subjects ($1{\times}8array$) and 16 in 5 subjects ($2{\times}8arrays$). Seven subjects had three-dimensional imaging fusion (3D-fusion) of MRI and the electrodes using Analyze program. We investigated the amplitude, latency, polarity, and phase of the waves regarding location. Results : The waves had maximal amplitude on PCL in 4 subjects, precuneus in 1, cingulate gyrus nearest to PCL in 2 among 7 subjects with 3D-fusion. Also the electrodes were located on posterior area of PCL (2 out of 2 subjects with more than two electrodes put on PCL in 3D-fusion) and superior area of it (5 out of 5 subjects with $2{\times}8arrays $). All the high (more than 20 uV) amplitude around 40msec had positive polarity in 7 subjects. The phase reversals were detected between the electrodes with the highest amplitude and the just posterior (2 subjects) or anterior (6 subjects) located electrodes. The just posterior located electrodes had sharper phase reversal than the anterior one. Conclusion : PTSEP might have maximal amplitude of cortical potentials on the more superior and posterior area of PCL. The highest amplitude potential has positivity. The wave with maximal amplitude could have phase reversal of cortical potentials with surrounding electrodes, especially shaper with posterior part than with anterior one.

  • PDF

Sensory recovery after infraorbital nerve avulsion injury

  • Lee, Sam Yong;Kim, Seung Hyun;Hwang, Jae Ha;Kim, Kwang Seog
    • Archives of Craniofacial Surgery
    • /
    • v.21 no.4
    • /
    • pp.244-248
    • /
    • 2020
  • The infraorbital nerve is a branch of the trigeminal nerve. Injury to the infraorbital nerve can be caused by trauma, including various facial fractures. Due to this nerve injury, patients complain of numbness and pain in the entire cheek, the ala of nose, and upper lip. In general, spontaneous sensory recovery is expected after decompressive surgery. If nerve transection is confirmed, however, neurorrhaphy is typically performed. Here, we present a case in which microsurgery was not performed in a patient with Sunderland grade V avulsion injury of the infraorbital nerve due to a facial bone fracture. Gradual nerve function recovery was confirmed to be possible with conservative treatment and rehabilitation alone. These findings suggest that the nerve function recovery can be expected with conservative treatment, even for severe nerve injury for which microsurgery cannot be considered.

Lateral Femoral Cutaneous Nerve Somatosensory Evoked Potential Study in Normal Adults (정상성인의 외측대퇴피부신경 체감각 유발전위 검사)

  • Moon, Seung-Sik;Park, Mee-Young
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.1
    • /
    • pp.67-74
    • /
    • 2001
  • Background: Meralgia paresthetica(MP) which is characterized by paresthesias and sensory impairment without motor weakness in the anterolateral aspects of the thigh is produced by compression of the lateral femoral cutaneous nerve(LFCN). Even though the diagnosis of MP is mostly based on the clinical symptoms, electrophysiologic study is mandatory to confirm the disease objectively. It has been known that Somatosensory evoked potential(SSEP) study of LFCN is a simple and very useful method to evaluate MP, so we studied SSEP of LFCN in normal adults and offer normal values. Materials and Methods: Thirty six normal adults(23 males and 13 females) ages from 21 to 73 years old($mean{\pm}SD$:$42.06{\pm}15.74$) were studied SSEP of LFCN bilaterally. The stimulation site was anterolateral aspect of thighs and the recording site was Cz'. Results: The mean values($mean{\pm}SD$) of $LP_0$, $SP_0$, $LN_1$ and $SN_1$ of all subjects were 35.10(${\pm}2.42$), 33.80(${\pm}2.4$), 43.68(${\pm}1.88$) and 42.16(${\pm}2.12$) and the mean values($mean{\pm}SD$ of $DP_0$, $DN_1$ and DA(${\mu}V{\pm}SD$ were 1.30(${\pm}1.14$), 1.52(${\pm}1.38$) and 0.32(${\pm}0.33$). Conclusion: For the diagnosis of MP. comparison of latency difference between both sides is more reliable than simple value of latency itself because of individual differences of body types. According to our results. the latency difference should be less than 2 msec and the amplitude difference was less than 1.6 times in normal adults.

  • PDF