• Title/Summary/Keyword: Sensors of distance measurement

Search Result 177, Processing Time 0.026 seconds

Resolution Enhancement of an Ultrasonic Sensor System via Multiple Steps of the Transmitter Voltage (다단 송출전압을 이용한 초음파센서 시스템의 분해능 개선)

  • Na, Seung-You;Park, Min-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.298-306
    • /
    • 1997
  • Ultrasonic sensors are widely used in various applications due to advantages of low cost, simplicity in construction, mechanical robustness, and little environmental restriction in usage. But the main purposes of the noncontact sensors are rather narrowly confined within object detection and distance measurement. For the application of object recognition, ultrasonic sensors exhibit several shortcomings of poor directionality which results in low spatial resolution of an object, and specularity which gives frequent erroneous range readings. To resolve these problems in object recognition, an array of the sensors has been used. To improve the spatial resolution, more number of sensors are used in essence throughout the various devices of the sensor arrays. Under the disguise of a fixed number of the sensors, the array can be shifted mechanically in several steps. In this paper we propose a practical sensor resolution enhancement method using an electronic circuit accompanying the sensor array. The circuit changes the transmitter output voltage in several steps. Using the known sensor characteristics, a set of different return echo signals provide enhanced spatial resolution. The improvement is obtained without the cost of the increased number of the sensors nor extra mechanical devices.

  • PDF

Indoor Navigation System for Visually Impaired Persons Using Camera and Range Sensors (카메라와 거리센서를 이용한 시각장애인 실내 보행안내 시스템)

  • Lee, Jin-Hee;Shin, Byeong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.4
    • /
    • pp.517-528
    • /
    • 2011
  • In this paper, we propose an indoor navigation system that can do walk safely to the destination for visually impaired persons. The proposed system analyzes images taken with the camera finds the ID of the marker to identify the absolute position of the pedestrian. Using the distance and angle obtained from IMU(Inertial Measurement Unit) accelerometer sensor and a gyro sensor, the system decides the relative position of a pedestrian for the previous position to determine the next direction. At the same time, we simplify a complex spatial structure in front of user by means of ultrasonic sensors and determine an avoidance direction by estimating the patterns. Then, it uses a few IR(Infrared Rays) sensors to detect stair. Our system offers position of visually impaired persons incorporating multiple sensors and helps users to arrive to destination safely.

A Novel Receiver Sensing Scheme for Capacitive Power Transfer System (전계결합 무선전력전송의 수신부 감지 방법)

  • Jeong, Chae-Ho;Im, Hwi-Yeol;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.62-65
    • /
    • 2019
  • Wireless power transfer systems require an algorithm to determine the presence of the target object for mitigating standby power and safety issues. Although many schemes that sense various external objects have been actively proposed for inductive power transfer systems, not many studies on capacitive power transfer systems have been conducted compared with those on inductive power transfer systems. This study proposes a target object detection algorithm by monitoring the capacitance in transmitter-side electrodes without additional pressure sensors or distance sensors. The proposed algorithm determines the presence of a target object by monitoring the change in capacitance in transmitter-side electrodes using the step pulse of the microcontroller unit. The algorithm is verified by two step processes. First, the performance in capacitance measurement is compared with that of an LCR meter. Then, the verification is conducted in a 5-W capacitive power transfer hardware. Experimental result shows that the interelectrode capacitance increases by 6 times when the target object is fully aligned. Thus, the proposed scheme can successfully detect the presence of the target object.

Wireless sensor network protocol comparison for bridge health assessment

  • Kilic, Gokhan
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.509-521
    • /
    • 2014
  • In this paper two protocols of Wireless Sensor Networks (WSN) are examined through both a simulation and a case study. The simulation was performed with the optimized network (OPNET) simulator while comparing the performance of the Ad-Hoc on demand Distance Vector (AODV) and the Dynamic Source Routing (DSR) protocols. This is compared and shown with real-world measurement of deflection from eight wireless sensor nodes. The wireless sensor response results were compared with accelerometer sensors for validation purposes. It was found that although the computer simulation suggests the AODV protocol is more accurate, in the case study no distinct difference was found. However, it was shown that AODV is still more beneficial in the field as it has a longer battery life enabling longer surveying times. This is a significant finding as a large factor in determining the use of wireless network sensors as a method of assessing structural response has been their short battery life. Thus if protocols which enhance battery life, such as the AODV protocol, are employed it may be possible in the future to couple wireless networks with solar power extending their monitoring periods.

Comparison of Multi-Static Sonar Target Positioning Performance (다중상태 소나망 위치 추정 성능 비교)

  • Park, Chee-Hyun;Ko, Han-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.166-172
    • /
    • 2007
  • In this paper, we address the target positioning performance of Multi-Static sonar with respect to target positioning method and measurement error. Based on the analysis on two candidate solution approaches, namely, Least Square (LS) using range and angular information simultaneously and Maximum Likelihood (ML) using only range information as the existing information fusion methods for possible application to Multi-Static sonar, we propose to employ ML using range and angular information. Assuming that each sensor can receive range and angular information, we conduct representative comparison experiments over the existing and proposed methods under various measurement noise scenarios. We also investigate the target positioning performance according to number of sensors, distance between transmitter and receiver. According to the experimental results, RMSE of the proposed ML with distance and direction information is found to be more superior to ML using distance alone and to LS in case distance between transmitter and receiver is longer and number of receiver is smaller.

Development of Long-perimeter Intrusion Detection System Aided by deep Learning-based Distributed Fiber-optic Acoustic·vibration Sensing Technology (딥러닝 기반 광섬유 분포 음향·진동 계측기술을 활용한 장거리 외곽 침입감지 시스템 개발)

  • Kim, Huioon;Lee, Joo-young;Jung, Hyoyoung;Kim, Young Ho;Kwon, Jun Hyuk;Ki, Song Do;Kim, Myoung Jin
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.24-30
    • /
    • 2022
  • Distributed fiber-optic acoustic·vibration sensing technology is becoming increasingly popular in many industrial and academic areas such as in securing large edifices, exploring underground seismic activity, monitoring oil well/reservoir, etc. Long-range perimeter intrusion detection exemplifies an application that not only detects intrusion, but also pinpoints where it happens and recognizes kinds of threats made along the perimeter where a single fiber cable was installed. In this study, we developed a distributed fiber-optic sensing device that measures a distributed acoustic·vibration signature (pattern) for intrusion detection. In addition, we demontrate the proposed deep learning algorithm and how it classifies various intrusion events. We evaluated the sensing device and deep learning algorithm in a practical testbed setup. The evaluation results confirm that the developed system is a promising intrusion detection system for long-distance and seamless recognition requirements.

Analysis on the Correlation Coefficient for the Diversity Technique Combined with Beamforming Using Measurement Data in Underwater Channel Environments (수중 채널 환경에서 측정 데이터를 이용한 빔형성기가 결합된 다이버시티의 상관 계수 분석)

  • Kim, Min-Sang;Cho, Dae-Young;Park, Jong-Won;Lim, Yong-Kon;Ko, Hak-Lim
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1023-1030
    • /
    • 2012
  • The diversity techniques can benefit underwater acoustic communications when the distance between sensors is sufficiently apart, and this leads to the increases in the physical size of the communication system: thus it is very hard to practically use such systems in real-environments. Therefore, in this paper, we have collected data from real underwater cannel environments in order to analyze the usability of diversity combined with beamforming techniques. And we have estimated the fading characteristics from the measurement data, and analyzed the correlation coefficients using the estimated fading characteristics. After analyzing the estimated fading characteristics from the measurements data, we found out that by applying diversity techniques on the output signals from beamformers that perform beamforming from different multipath directions, we can reduce the distance between sensors and at the same time benefit from the diversity gain.

Vision Sensor and Deep Learning-based Around View Monitoring System for Ship Berthing (비전 센서 및 딥러닝 기반 선박 접안을 위한 어라운드뷰 모니터링 시스템)

  • Kim, Hanguen;Kim, Donghoon;Park, Byeolteo;Lee, Seung-Mok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.2
    • /
    • pp.71-78
    • /
    • 2020
  • This paper proposes vision sensors and deep learning-based around view monitoring system for ship berthing. Ship berthing to the port requires precise relative position and relative speed information between the mooring facility and the ship. For ships of Handysize or higher, the vesselships must be docked with the help of pilots and tugboats. In the case of ships handling dangerous cargo, tug boats push the ship and dock it in the port, using the distance and velocity information receiving from the berthing aid system (BAS). However, the existing BAS is very expensive and there is a limit on the size of the vessel that can be measured. Also, there is a limitation that it is difficult to measure distance and speed when there are obstacles near the port. This paper proposes a relative distance and speed estimation system that can be used as a ship berthing assist system. The proposed system is verified by comparing the performance with the existing laser-based distance and speed measurement system through the field tests at the actual port.

Evaluation of Wireless MEMS Sensor Measurements at an Outdoor Field With Temperature Variation in Extreme Environment (극한 환경에서 온도 변화에 따른 실외 현장에서의 무선 MEMS 센서 계측 유효성 평가)

  • Lee, Jong-Ho;Cheon, Dong-Jin;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.67-74
    • /
    • 2018
  • Recently, measuring instruments for SHM of structures has been developed. In general, the wireless transmission of sensor signals, compared to its wired counterpart, is preferable due to the absence of triboelectric noise and elimination of the requirement of a cumbersome cable. However, in extreme environments, the sensor may be less sensitive to temperature changes and to the distance between the sensor and data logger. This may compromise on the performance of the sensor and instrumentation. Therefore, in this paper, free vibration experiments were conducted using wireless MEMS sensors at an actual site. Measurement was assessed in time and frequency domain by changing the temperature variation at($-8^{\circ}C$, $-12^{\circ}C$ and $-16^{\circ}C$) and the communication distance (20m, 40m, 60m, 80m).

A Study of Laboratory Measurement of EO GRD Resolution for Airborne EO/IR Sensor (항공용 EO/IR 센서의 EO GRD 분해능 실험실 측정 연구)

  • Huh, Joon;Kim, Chang-Woo;Kim, Sungsoo;Kim, Byoung-Wan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.793-799
    • /
    • 2014
  • EO GRD(Ground Resolved Distance) resolution of airborne EO/IR(Electro-Optical/Infrared) sensor is a critical factor in test and evaluation for EO sensor performance. We propose the laboratory measurement set-up for EO GRD by constructing optical collimator which includes integrated sphere, blackbody, equivalent 3-bar target and 6 DOF motion simulator. GRD is measured in the photographic imagery of bar targets by 3 different distances for 3 EO/IR sensors and the measured results were analyzed statistically. We found that at least 7 sheets of imagery are needed in order to obtain meaningful EO GRD. The result of statistical analysis shows that the distribution of the measured GRD is nearly symmetric about the average GRD, and the better imagery ratio above the average GRD is about 40~70%. Also from the best GRD analysis, it is estimated that the design goal for EO GRD should be 30% superior to the required GRD.