• Title/Summary/Keyword: Sensorimotor cortex

Search Result 33, Processing Time 0.039 seconds

Brain Activation Evoked by Sensory Stimulation in Patients with Spinal Cord Injury : Functional Magnetic Resonance Imaging Correlations with Clinical Features

  • Lee, Jun Ki;Oh, Chang Hyun;Kim, Ji Yong;Park, Hyung-Chun;Yoon, Seung Hwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.3
    • /
    • pp.242-247
    • /
    • 2015
  • Objective : The purpose of this study is to determine whether the changes of contralateral sensorimotor cortical activation on functional magnetic resonance imaging (fMRI) can predict the neurological outcome among spinal cord injury (SCI) patients when the great toes are stimulated without notice. Methods : This study enrolled a total of 49 patients with SCI and investigated each patient's preoperative fMRI, postoperative fMRI, American Spinal Injury Association (ASIA) score, and neuropathic pain occurrence. Patients were classified into 3 groups according to the change of blood oxygenation level dependent (BOLD) response on perioperative fMRI during proprioceptive stimulation with repetitive passive toe movements : 1) patients with a response of contralateral sensorimotor cortical activation in fMRI were categorized; 2) patients with a response in other regions; and 3) patients with no response. Correlation between the result of fMRI and each parameter was analyzed. Results : In fMRI data, ASIA score was likely to show greater improvement in patients in group A compared to those belonging to group B or C (p<0.001). No statistical significance was observed between the result of fMRI and neuropathic pain (p=0.709). However, increase in neuropathic pain in response to the signal change of the ipsilateral frontal lobe on fMRI was statistically significant (p=0.030). Conclusion : When there was change of BOLD response at the contralateral sensorimotor cortex on perioperative fMRI after surgery, relief of neurological symptoms was highly likely for traumatic SCI patients. In addition, development of neuropathic pain was likely to occur when there was change of BOLD response at ipsilateral frontal lobe.

Effect of Improved Forelimb Sensorimotor Function on the Transcranial Direct Current Stimulation in a Focal Ischemic Brain Injury Rat Model (국소 허혈성 뇌손상 흰쥐 모델에서 경두개직류전기자극이 앞다리 운동감각 기능 증진에 미치는 효과)

  • Kim, Gi-Do;Sim, Ki-Cheol;Kim, Kyung-Yoon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.273-282
    • /
    • 2011
  • This study was to investigate the effect of improve forelimb sensorimotor function and neurotrophic factor(GAP-43) expression when differing an application time of tDCS in ischemic brain injury rat model(pre, $1^{st}$, $7^{th}$, $14^{th}$). Focal ischemic brain injury was induced in 80 Sprague-Dawley rats through middle cerebral artery occlusion(MCAO) by 'Longa' method. And then experimental groups were randomly divided into four groups; GroupI: MCAO induction, GroupII: application of tDCS(10 min) after MCAO induction, GroupIII: application of tDCS(20 min) after MCAO induction, GroupIV: application of tDCS(30 min) after MCAO induction. Modified limb placing test and single pellet reaching test were performed to test forelimb sensorimotor function. And the histological examination was also observed through the immunohistochemistric response of GAP-43(growth-associated protein-43) in the cerebral cortex. In modified limb placing test, groupIII(p<0.05) showed significantly improve than the other groups on $14^{th}$). day. In single pellet reaching test, groupIII(p<0.01) and groupIV(p<0.05) significantly improved on $14^{th}$) day. And in immunohistochemistric response of GAP-43, group III showed significantly positive response than the other groups on $14^{th}$ day. These results suggest that the intensity(0.1 mA)/time(20 min) condition of tDCS application has a significant impact on the sensorimotor functional recovery in focal ischemic brain injury rat models.

The Recovery Effects of Joojakwhan - A Traditional Korean Medical Poly-herbal Drug for the Cognitions and Motor Functions in Mild Stroke Rat Model by Using Transient Middle Cerebral Artery Occlusion (주작환(朱雀丸)이 일시적 국소 뇌허혈 유발 백서(白鼠)에 대한 인지 및 운동기능 회복에 미치는 효과)

  • Kim, Bo-Eun;Kang, Seok-Bong;Chung, Dae-Kyoo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.24 no.4
    • /
    • pp.419-434
    • /
    • 2013
  • Objectives: The object of this study is to observe the cognition and motor function recovery effects of Joojakwhan (JJW), a traditional Korean poly-herbal formula for treating various neuropsychiatric diseases such as dementia, for the mildly stroke rats, with 60 minutes of reperfusion transient middle cerebral artery occlusion (tMCAO). Methods: In the present study, 125, 250 and 500 mg/kg of JJW were orally administered, once per day for 10 continuous days 2 hours after the tMCAO. The body weight changes, infarct sizes under 2% 2, 3, 5-triphenyl tetrazolium chloride (TTC) stain, sensorimotor functions and cognitive motor behavior tests were serially monitored with cerebral caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP)-immunoreactivities and histopathological changes. The effects of tMCAO on sensorimotor functions were evaluated by using of limb placing and body-swing tests, and the cognitive motor behaviors were also observed with water maze tests. Results: From the results of tMCAO, with marked decreases of body weights, disorders of sensorimotor functions increases the limb placing test scores, and decrease the numbers and percentages of body swings to the ipsilateral sides. The cognitive motor behaviors increases the distances and time to reach the escape platform which included the inhibitions of the decreases with repeated trials that were observed with focal cerebral cortex infarct volumes. In addition, the marked increases of the atrophy, numbers of degeneration, caspase-3- and PARP-immunoreactive cells around peri-infarct ipsilateral cerebral cortex were also observed in tMCAO controls when compared with the sham control rats, respectively. Conclusions: The results obtained from this study suggest that oral administrations of JJW indicate obvious cognitions and motor function recoveries of the rats with tMCAO, mild strokes, which are mediated by neuro-protective effects through known antioxidant effects of components.

Motor Recovery in Stroke Patients (뇌졸중의 운동신경기능 회복)

  • Jang, Sung-Ho;Kwon, Yong-Hyun
    • Journal of Yeungnam Medical Science
    • /
    • v.22 no.2
    • /
    • pp.119-130
    • /
    • 2005
  • Stroke is a leading cause of chronic physical disability. The recent randomized controlled trials have that motor function of chronic stroke survivors could be improved through physical or pharmacologic intervention in the stroke rehabilitation setting. In addition, several functional neuroimaging techniques have recently developed, it is available to study the functional topography of sensorimotor area of the brain. However, the mechanisms involved in motor recovery after stroke, are still poorly understood. Four motor recovery mechanisms have been suggested, such as reorganization into areas adjacent to the injured primary motor cortex (M1), unmasking of the motor pathway from the unaffected motor cortex to the affected hand, attribution of secondary motor areas, and recovery of the damaged contralateral corticospinal tract. Understanding the motor recovery mechanisms would provide neurorehabilitation specialists with more information to allow for precise prognosis and therapeutic strategies based on the scientific evidence; this may help promote recovery of motor function. This review introduces several methodologies for neuroimaging techniques and discusses theoretical issues that impact interpretation of functional imaging studies of motor recovery after stroke. Perspectives, for future research are presented.

  • PDF

The Effects of Action Observation with Functional Electrical Stimulation on Corticomuscular Coherence

  • Kim, Ji Young;Ryu, Young Uk;Park, Jiwon
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.6
    • /
    • pp.365-371
    • /
    • 2020
  • Objective: To investigate the action observation effects of functional electrical stimulation (FES) on the communication between motor cortex and muscle through corticomuscular coherence (CMC) analysis. Methods: Electroencephalogram (EEG) and electromyogram (EMG) of 27 healthy, nonathlete subjects were measured during action observation, FES, and action observation with FES, which lasted for 7sper session for 10 times. All trials were repeated for 30 times. Simultaneously measured EEG raw data and rectified EMG signals were used to calculate CMC. Only confidence limit values above 0.0306 were used for analysis. CMC was divided into three frequency domains, andthe grand average coherence and peak coherence were computed. Repeated ANOVA was performed to analyze the coherence value difference for each condition's frequency band. Results: CMC showed significant differences in peak coherence and average coherence between the conditions (p<0.05). Action observation application with FES in all frequency band showed the highest peak and average coherence value. Conclusions: The results of this study are assumed to be the combination of increased eccentric information transfer from the sensorymotor cortex by action observation and an increased in concentric sensory input from the peripheral by the FES, suggesting that these are reflecting the sensorimotor integration process.

Immediate Effect on Mu-rhythm of Somatosensory Cortex using Visual Feedback Training in Healthy Adults (건강한 성인에서 시각적 되먹임 훈련이 감각운동겉질의 뮤-리듬에 미치는 즉각적인 효과 )

  • Su-Bok Kim;On-Seok Lee
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.3
    • /
    • pp.47-53
    • /
    • 2023
  • PURPOSE: A visual feedback method was proposed to induce brain stimulation in a stroke patient, and among them, there was a treatment using a mirror. On the other hand, mirror therapy focuses only on the functional changes in body movements, and analysis of neurophysiological mechanisms of brain activity is lacking. In addition, studies on evaluating the activity and response generated in specific brain regions during visual feedback training using mirrors are insufficient. METHODS: Fifteen healthy adults (male: 10, female: 5, Years: 23.33 ± 1.23), who were right-handed were recruited. By attaching the C3, Cz, and C4 channels in the sensorimotor cortex using an electroencephalogram, training was performed under the conditions without mirror-based visual feedback (No-condition) and with visual feedback (Tasks-condition). At this time, the immediate activity of the mu-rhythm in response to training was separated and evaluated. RESULTS: The tasks-condition of C3, Cz, and C4 channels activated the relative mu-rhythm rather than the no-condition, and all showed significant differences (p < .05). In addition, in all channels at the start time, the tasks-condition was more active than the no-condition (p < .05). The activity of the cortical response was higher in the tasks-condition than in the no-condition (p < .05). CONCLUSION: The mu-rhythm activity can be evaluated objectively when visual feedback using a mirror is applied to healthy subjects, and a basic analysis protocol is proposed.

Clinical Application of Functional MRI : Motor Cortex Activities by Acupuncture

  • Choe, Bo-Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.6 no.2
    • /
    • pp.89-93
    • /
    • 2002
  • We report a preliminary fMRI evidence of modulation of somatomotor areas by acupuncture in GB34 acupoint. GB34, located in the back of the knee, is known to be effective in recovering motor function after stroke. Using 3T MR scanner, functional MR imaging was performed in five normal volunteers in two stimulation paradigms; acupuncture manipulation on GB34 and sham points. Group analysis form five individuals showed that bilateral sensorimotor areas (BA 3,4,6 and 7) showed stimulation related BOLD signal contrast of approximately 6% whereas very few areas were activated when sham stimulation is given. Our results suggest that acupuncture fMRI study can be safely conducted in 3T environment and stimulation in GB34 modulate the cortical activities of the somatomotor area in human.

  • PDF

Clinical Application of Functional MRI : Motor Cortex Activities by Acupuncture

  • Choe, Bo-Young
    • Proceedings of the Korean Magnetic Resonance Society Conference
    • /
    • 2002.08a
    • /
    • pp.21-25
    • /
    • 2002
  • We report a preliminary fMRI evidence of modulation of somatomotor areas by acupuncture in GB34 acupoint. GB34, located in the back of the knee, is known to be effective in recovering motor function after stroke. Using 3T MR scanner, functional MR imaging was performed in five normal volunteers in two stimulation paradigms; acupuncture manipulation on GB34 and sham points. Group analysis from five individuals showed that bilateral sensorimotor areas (BA 3,4,6 and 7) showed stimulation related BOLD signal contrast of approximately 6% whereas very few areas were activated when sham stimulation is given. Our results suggest that acupuncture fMRI study can be safely conducted in 3T environment, and stimulation in GB34 modulate the cortical activities of the somatomotor area in human.

  • PDF

Effect of Transcranial Direct Current Stimulation on Movement Variability in Repetitive - Simple Tapping Task

  • Kwon, Yong Hyun;Cho, Jeong Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.38-42
    • /
    • 2015
  • Purpose: Accuracy and variability of movement in daily life require synchronization of muscular activities through a specific chronological order of motor performance, which is controlled by higher neural substrates and/or lower motor centers. We attempted to investigate whether transcranial direct current stimulation (tDCS) over primary sensorimotor areas (SM1) could influence movement variability in healthy subjects, using a tapping task. Methods: Twenty six right-handed healthy subjects with no neurological or psychiatric disorders participated in this study. They were randomly and equally assigned to the real tDCS group or sham control group. Direct current with intensity of 1 mA was delivered over their right SM1 for 15 minutes. For estimation of movement variability before and after tDCS, tapping task was measured, and variability was calculated as standard deviation of the inter-tap interval (SD-ITI). Results: At the baseline test, there was no significant difference in SD-ITI between the two groups. In two-way ANOVA with repeated measurement no significant differences were found in a large main effect of group and interaction effect between two main factors (i.e., group factor and time factor (pre-post test)). However, significant findings were observed in a large main effect of the pre-post test. Conclusion: Our findings showed that the anodal tDCS over SM1 for 15 minutes with intensity of 1 mA could enhance consistency of motor execution in a repetitive-simple tapping task. We suggest that tDCS has potential as an adjuvant brain facilitator for improving rhythm and consistency of movement in healthy individuals.

Role of the Vestibular and Medullary Reticular Neuclei for the Motor Evoked Potentials in Rats (흰쥐의 운동유발전위에 대한 전정신경핵과 연수망상핵의 역할)

  • Lee, Moon-Young;Lee, Sung-Ho;Kim, Jae-Hyo;Park, Byung-Rim;Kim, Min-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.603-611
    • /
    • 1997
  • The motor evoked potentials (MEPs) have been advocated as a method of monitoring the integrity of spinal efferent pathways in various injury models of the central nervous system. However, there were many disputes about origin sites of MEPs generated by transcranial electrical stimulation. The purpose of present study was to investigate the effect of major extrapyramidal motor nuclei such as lateral vestibular nucleus (VN) and medullary reticular nucleus (mRTN) on any components of the MEPs in adult Sprague-Dalwey rats. MEPs were evoked by electrical stimulation of the right sensorimotor cortex through a stainless steel screw with 0.5mm in diameter, and recorded epidurally at T9 - T10 spinal cord levels by using a pair of teflon-coated stainless steel wire electrodes with 1mm exposed tip. In order to inject lidocaine and make a lesion, insulated long dental needle with noninsulated tips were placed stareotoxically in VN and mRTN. Lidocaine of $2{\sim}3\;{\mu}l$ was injected into either VN or mRTN. The normal MEPs were composed of typical four reproducible waves; P1, P2, P3, P4. The first wave (P1) was shown at a mean latency of 1.2 ms, corresponding to a conduction velocity of 67.5 m/sec. The latencies of MEPs were shortened and the amplitudes were increased as stimulus intensity was increased. The amplitudes of P1 and P2 were more decreased among 4 waves of MEPs after lidocaine microinjection into mRTN. Especially, the amplitude of P1 was decreased by 50% after lidocaine microinjection into bilateral mRTN. On the other hand, lidocaine microinjection into VN reduced the amplitudes of P3 and P4 than other MEP waves. However, the latencies of MEPs were not changed by lidocaine microinjection into either VN or mRTN. These results suggest that the vestibular and reticular nuclei contribute to partially different role in generation of MEPs elicited by transcranial electrical stimulation.

  • PDF