• Title/Summary/Keyword: Sensorimotor

Search Result 136, Processing Time 0.024 seconds

Effect of Somatosensory Stimulation on Upper Limb in Sensory, Hand Function, Postural Control and ADLs within Sensorimotor Deficits after Stroke (뇌졸중 환자의 상지 체감각 자극을 통한 감각, 손 기능, 자세조절 및 일상생활수행력의 변화)

  • Song, Bo-Kyung
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.5
    • /
    • pp.291-299
    • /
    • 2012
  • Purpose: This study examined the improved sensory, hand function, postural balance and activities of daily living (ADL) through somatosensory stimulation, such as the facilitation of functional reaching and tactile, proprioceptive stimulus of the upper limb (UL) and hand. Methods: Seventeen stroke patients having problems with motor and somatosensory deficits were selected in Bobath Memorial Hospital adult rehabilitation center. The patients were divided into two groups; the sensorimotor deficit group (SMDG) and motor deficit group (MDG). Somatosensory stimulation on the UL, physical therapy and occupational therapy were carried out three times a week over a six week these treatments were performed in both group period. To compare each group, the following assessment tools were used: such as tactile detection thresholds (TDT), two point discrimination on the affected side (TPDas), unaffected side (TPDus) stereognosis (ST) manual function test, hand function on the affected side (HFas) and unaffected side (HFus), Postural Assessment Scale for Stroke (PASS) and Korean version Modified Barthel Index (K-MBI). Results: In the SMDG, somatosensory stimulation on the UL was statistically important for TDT, TPDas, TPDus (except for the thener), ST, hand function on HFas, on HFus, PASS length of displacement with foam (LDFSEO), and K-MBI. In the MDG, somatosensory stimulation on the UL was important for TDT, TPDas, TPDus (except index finger) length of displacement with the eyes open, LDFSEO, HFas, HFus, PASS and K-MBI. In addition, there was a significant difference in the PASS between SMDG and MDG. Conclusion: Somatosensory stimulation on the UL affects the sensory, hand function, postural control and ADLs performance.

Functional Electric Stimulation-assisted Biofeedback Therapy System for Chronic Hemiplegic Upper Extremity Function

  • Kim, Yeung Ki;Song, Jun Chan;Choi, Jae Won;Kim, Jang Hwan;Hwang, Yoon Tae
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.6
    • /
    • pp.409-413
    • /
    • 2012
  • Purpose: Rehabilitative devices are used to enhance sensorimotor training protocols, for improvement of motor function in the hemiplegic limb of patients who have suffered a stroke. Sensorimotor integration feedback systems, included with these devices, are very good therapeutic frameworks. We applied this approach using electrical stimulation in stroke patients and examined whether a functional electric stimulation-assisted biofeedback therapy system could improve function of the upper extremity in chronic hemiplegia. Methods: A prototype biofeedback system was used by six subjects to perform a set of tasks with their affected upper extremity during a 30-minute session for 20 consecutive working days. When needed for a grasping or releasing movement of objects, the functional electrical stimulation (FES) stimulated the wrist and finger flexor or extensor and assisted the patients in grasping or releasing the objects. Kinematic data provided by the biofeedback system were acquired. In addition, clinical performance scales and activity of daily living skills were evaluated before and after application of a prototype biofeedback system. Results: Our findings revealed statistically significant gradual improvement in patients with stroke, in terms of kinematic and clinical performance during the treatment sessions, in terms of manual function test and the Purdue pegboard. However, no significant difference of the motor activity log was found. Conclusion: Hemiplegic upper extremity function of a small group of patients with chronic hemiparesis was improved through two weeks of training using the FES-assisted biofeedback system. Further research into the use of biofeedback systems for long-term clinical improvement will be needed.

Brain laterality and whole brain EEG on the learning senses (학습감각에 대한 뇌의 분화성과 통합성 뇌파연구)

  • Kwon, Hyungkyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.55-64
    • /
    • 2015
  • The present study identified the brain based learning activities on the individual learning senses by using the brain laterality and the whole brain index. Students receive the information through the visual, auditory, and kinesthetic senses by Politano and Paquin's (2000) classification. These learning senses are reflected on brain by the various combinations of senses for learning. Measuring the types of the learning senses involving in brain laterality and whole brain is required to figure out the related learning styles. Self-directed learning involved in the learning senses shows the problem-based learning associated to the brain function by emphasizing the balanced brain utilization which is known as whole brain. These research results showed the successful whole brain learning is closely associated with elevated auditory learning and elevated visual learning in sensorimotor brainwave rhythm (SMR) while it shows the close association with elevated kinesthetic and elevated visual learning in beta brainwave rhythm.

Effect of Transcranial Direct Current Stimulation on Movement Variability in Repetitive - Simple Tapping Task

  • Kwon, Yong Hyun;Cho, Jeong Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.38-42
    • /
    • 2015
  • Purpose: Accuracy and variability of movement in daily life require synchronization of muscular activities through a specific chronological order of motor performance, which is controlled by higher neural substrates and/or lower motor centers. We attempted to investigate whether transcranial direct current stimulation (tDCS) over primary sensorimotor areas (SM1) could influence movement variability in healthy subjects, using a tapping task. Methods: Twenty six right-handed healthy subjects with no neurological or psychiatric disorders participated in this study. They were randomly and equally assigned to the real tDCS group or sham control group. Direct current with intensity of 1 mA was delivered over their right SM1 for 15 minutes. For estimation of movement variability before and after tDCS, tapping task was measured, and variability was calculated as standard deviation of the inter-tap interval (SD-ITI). Results: At the baseline test, there was no significant difference in SD-ITI between the two groups. In two-way ANOVA with repeated measurement no significant differences were found in a large main effect of group and interaction effect between two main factors (i.e., group factor and time factor (pre-post test)). However, significant findings were observed in a large main effect of the pre-post test. Conclusion: Our findings showed that the anodal tDCS over SM1 for 15 minutes with intensity of 1 mA could enhance consistency of motor execution in a repetitive-simple tapping task. We suggest that tDCS has potential as an adjuvant brain facilitator for improving rhythm and consistency of movement in healthy individuals.

Effect of Sensorimotor Training Using a Flexi-bar on Postural Balance and Gait Performance for Children With Cerebral Palsy: A Preliminary Study

  • Ga, Hyun-you;Sim, Yon-ju;Moon, Il-young;Yun, Sung-joon;Yi, Chung-hwi
    • Physical Therapy Korea
    • /
    • v.24 no.2
    • /
    • pp.58-65
    • /
    • 2017
  • Background: Children with cerebral palsy (CP) have impaired postural control, but critically require the control of stability. Consequently, therapeutic interventions for enhancing postural control in children with CP have undergone extensive research. One intervention is sensorimotor training (SMT) using a Flexi-bar, but this has not previously been studied with respect to targeting trunk control in children with CP. Objects: This study was conducted to determine the effect of SMT using a Flexi-bar on postural balance and gait performance in children with CP. Methods: Three children with ambulatory spastic diplegia (SD) participated in the SMT program by using a Flexi-bar for forty minutes per day, three times a week, for six weeks. Outcome variables included the pediatric balance scale (PBS), trunk control movement scale (TCMS), 10 meter walking test (10MWT), and 3-dimensional movement coordination measurement. Results: The SMT provided no statistically significant improvement in PBS, TCMS, 10MWT, or 3-dimensional movement coordination measurement. However, positive changes were observed in individual outcomes, as balance and trunk control movement were improved. Conclusion: SMT using a Flexi-bar may be considered by clinicians as a potential intervention for increasing postural balance and performance in children with SD. Future studies are necessary to confirm the efficacy of Flexi-bar exercise in improving the functional activity of subjects with SD.

Clinical Utility of Dorsal Sural Nerve Conduction Studies in Patients with Polyneuropathy and Normal Sural Response (정상 장딴지 신경 반응을 보이는 다발 신경병증 환자에서의 등쪽 장딴지 신경 전도 검사의 임상적 유용성)

  • Cho, Joong-Yang;Heo, Jae-Hyeok;Min, Ju-Hong;Kim, Nam-Hee;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.7 no.2
    • /
    • pp.97-100
    • /
    • 2005
  • Background: The most distal sensory fibers of the feet are often affected first in polyneuropathy. However, they are not evaluated in routine nerve conduction studies. Thus we evaluated the dorsal sural sensory nerve in patients with sensorimotor polyneuropathy with normal sural response, in order to assess the usefulness in electrodiagnostic practice. Methods: In this study, 53 healthy subjects and 27 patients with clinical evidence of sensorimotor polyneuropathy were included. In all subjects, peripheral motor and sensory nerve studies were performed on the upper and lower limbs including dorsal sural nerve conduction studies. On electrodiagnostic testing, all patients had normal sural responses. Results: The dorsal sural sensory nerve action potentials (SNAPs) mean amplitude was $13.12{\pm}5.68{\mu}V$, mean latency was $3.12{\pm}0.43msec$, and mean sensory conduction velocity (SCV) was $36.50{\pm}3.40m/s$ in healthy subjects. In 7 of 27 patients, the dorsal sural nerve SNAPs were absent bilaterally, and in 20 patients, the mean dorsal sural nerve distal latency was longer($3.40{\pm}0.48ms$, P=0.006), and mean SCV was slower than in healthy subjects($35.08{\pm}4.59$, P=0.043). However, dorsal sural nerve amplitude was not different between the groups (P=0.072). Conclusions: Our findings suggest that dorsal sural nerve conduction studies should be included in the routine electrodiagnostic evaluation of patients with suspected polyneuropathy and normal sural nerve responses.

  • PDF

Effects of Sweet Bee Venom on the Central Nervous System in Rats -using the Functional Observational Battery- (Sweet BV 시술이 Rat의 중추신경계에 미치는 영향 - 기능관찰 종합평가를 이용하여-)

  • An, Joong-Chul;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.14 no.3
    • /
    • pp.19-45
    • /
    • 2011
  • Objectives: This study was performed to analyse the effects of Sweet Bee Venom(Sweet BV-pure melittin, the major component of honey bee venom) on the central nervous system in rats. Methods: All experiments were conducted at Biotoxtech Company, a non-clinical studies authorized institution, under the regulations of Good Laboratory Practice (GLP). Male rats of 5 weeks old were chosen for this study and after confirming condition of rats was stable, Sweet BV was administered in thigh muscle of rats. And checked the effects of Sweet BV on the central nervous system using the functional observational battery (FOB), which is a neuro-toxicity screening assay composed of 30 descriptive, scalar, binary, and continuous endpoints. And home cage observations, home cage removal and handling, open field activity, sensorimotor reflex test/physiological measurements were conducted. Results: 1. In the home cage observation, there was not observed any abnormal signs in rats. 2. In the observation of open field activity, the reduction of number of unit areas crossed and rearing count was observed caused by Sweet BV treatment. 3. In the observation of handling reactivity, there was not observed any abnormal signs in rats. 4. In the observation of sensorimotor reflex tests/physiological measurements, there was not observed any neurotoxic signs in rats. 5. In the measurement of rectal temperature, treatment of Sweet BV did not showed great influences in the body temperature of rats. Conclusions: Above findings suggest that Sweet BV is relatively safe treatment in the central nervous system. But in the using of over dose, Sweet BV may the cause of local pain and disturbance of movement. Further studies on the subject should be conducted to yield more concrete evidences.

Effect of Multisensory Intervention on Locomotor Function in Older Adults with a History of Frequent Falls

  • You, Sung-Hyun
    • Physical Therapy Korea
    • /
    • v.11 no.4
    • /
    • pp.51-60
    • /
    • 2004
  • Falls are common, costly, and a leading cause of death among older adults. The major predisposing factors of a fall may include age-related deterioration in the dynamic system composed of auditory, somatosensory, vestibular, visual, musculoskeletal, and neuromuscular subsystems. Older adults with a history of frequent falls demonstrated significant reductions in gait velocity, muscle force production, and balance performance. These altered neuromechanical characteristics may be further exaggerated when faced with conflicting multisensory conditions. Despite the important contribution of multisensory function on the sensorimotor system during postural and locomotor tasks, it remains unclear whether multisensory intervention will produce dynamic balance improvement during locomotion in older adults with a history of frequent falls. Therefore, the purpose of this paper is to address important factors associated with falls in elderly adults and provide theoretical rationale for a multisensory intervention program model.

  • PDF

Polyneuropathy and Recurrent Focal Neuropathy in Anorexia Nervosa (다발성 신경병증과 재발성 국소 신경병증을 보인 신경성 식욕부진)

  • Kim, Han-Joon;Kim, Sung Hun;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.3 no.1
    • /
    • pp.40-42
    • /
    • 2001
  • Anorexia nervosa(AN) is a disorder characterized by disturbance of body image, fear of gaining weight, severe weight loss and, in female, amenorrhea. Compared with normal persons, patients with AN have neuropathic symptoms more frequently. But electrophysiologic abnormalities have rarely been reported. We experienced a case with recurrent neuropathic symptoms after severe weight loss. Further evaluation revealed AN. Electrophysiologic study showed sensorimotor polyneuropathy and focal neuropathy with conduction block. As far as we know, this feature of neuropathy in AN has not been described. We describe unusual feature of neuropathy in our patient with literature review.

  • PDF

A Case of Squamous Cell Lung Cancer Representing as Guillain-Barre Syndrome Associated with Monospecific Anti-GD1b IgG (항 GD1b IgG 단일 항체와 관련된 길랭-바레 증후군으로 발현된 편평상피세포 폐암 증례)

  • Kim, Yeshin;Kim, Seongheon
    • Annals of Clinical Neurophysiology
    • /
    • v.17 no.1
    • /
    • pp.31-34
    • /
    • 2015
  • We report a case with squamous cell lung cancer with concomitant Guillain-Barre syndrome (GBS) as a paraneoplastic syndrome. A 67-year-old patient who was previously diagnosed as metastatic squamous cell lung cancer developed mild symmetrical weakness, paresthesia and sensory ataxia. Nerve conduction study showed sensorimotor polyneuropathy. Analysis of cerebrospinal fluid showed high tilter for monospecific anti-GD1b IgG antibody without onconeuronal antibodies. After treatment with intravenous immunoglobulin, the patient's symptoms improved.