• Title/Summary/Keyword: Sensor node

Search Result 1,926, Processing Time 0.031 seconds

Estimate algorithm for efficient sensing mobility of node in wireless sensor networks (센서 네트워크에서 노드의 효율적인 센싱 이동성을 위한 예측 알고리즘)

  • Jung, Sung-Jae;You, Byung-Hun;Rhee, Byung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.711-712
    • /
    • 2006
  • In this paper, we propose algorithm that improves energy efficiency of sensor node. That is, sensor node suggests algorithm that minimizes unnecessary surrounding feeler, and when passes information to neighborhood node, transmit forecasting position of node.

  • PDF

A Novel Jamming Detection Technique for Wireless Sensor Networks

  • Vijayakumar, K.P.;Ganeshkumar, P.;Anandaraj, M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4223-4249
    • /
    • 2015
  • A novel jamming detection technique to detect the presence of jamming in the downstream direction for cluster based wireless sensor networks is proposed in this paper. The proposed technique is deployed in base station and in cluster heads. The proposed technique is novel in two aspects: Firstly, whenever a cluster head receives a packet it verifies whether the source node is legitimate node or new node. Secondly if a source node is declared as new node in the first step, then this technique observes the behavior of the new node to find whether the new node is legitimate node or jammed node. In order to monitor the behavior of the existing node and new node, the second step uses two metrics namely packet delivery ratio (PDR) and received signal strength indicator (RSSI). The rationality of using PDR and RSSI is presented by performing statistical test. PDR and RSSI of every member in the cluster is measured and assessed by the cluster head. And finally the cluster head determines whether the members of the cluster are jammed or not. The CH can detect the presence of jamming in the cluster at member level. The base station can detect the presence of jamming in the wireless sensor network at CH level. The simulation result shows that the proposed technique performs extremely well and achieves jamming detection rate as high as 99.85%.

Impact of Sink Node Location in Sensor Networks: Performance Evaluation (센서 네트워크에서 싱크 노드 위치가 성능에 미치는 영향 분석)

  • Choi, Dongmin;Kim, Seongyeol;Chung, Ilyong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.977-987
    • /
    • 2014
  • Many of the recent performance evaluation of clustering schemes in wireless sensor networks considered one sink node operation and fixed sink node location without mentioning about any network application requirements. However, application environments have variable requirements about their networks. In addition, network performance is sufficiently influenced by different sink node location scenarios in multi-hop based network. We also know that sink location can influence to the sensor network performance evaluation because of changed multipath of sensor nodes and changed overload spots in multipath based wireless sensor network environment. Thus, the performance evaluation results are hard to trust because sensor network is easily changed their network connection through their routing algorithms. Therefore, we suggest that these schemes need to evaluate with different sink node location scenarios to show fair evaluation result. Under the results of that, network performance evaluation results are acknowledged by researchers. In this paper, we measured several clustering scheme's performance variations in accordance with various types of sink node location scenarios. As a result, in the case of the clustering scheme that did not consider various types of sink location scenarios, fair evaluation cannot be expected.

R-peak Detection Algorithm in Wireless Sensor Node for Ubiquitous Healthcare Application (유비쿼터스 헬스케어 시스템을 위한 노드기반의 R피크 검출 알고리즘)

  • Lee, Dae-Seok;Hwang, Gi-Hyun;Cha, Kyoung-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.227-232
    • /
    • 2011
  • The QRS complex in ECG analysis is possible to obtain much information that is helpful for diagnosing different types of cardiovascular disease. This paper presents the preprocessor method to detect R-peak, RR interval, and HRV in wireless sensor node. The derivative of the electrocardiogram is efficiency of preprocessing method for resource hungry wireless sensor node with low computation. We have implemented R-peak and RR interval detection application based on dECG for wireless sensor node. The sensor node only transfers meaning parameter of ECG. Thus, implementation of sensor node can save power, reduce traffic, and eliminate congestion in a WSN.

Study of Location-based Routing Techniques of BS and Sensor Node (BS와 센서 노드의 위치 기반 라우팅 기법에 관한 연구)

  • Kim, Yong-Tae;Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.289-295
    • /
    • 2012
  • Routing technique of wireless sensor network that is presented to improve effectiveness of consumption in energy at the previous study is existing in various ways, however for routing, its own location data and nodes' location data close to with 1-hop distance should be kept. And it uses multi-hop transmission method that transmits data to BS node via several nodes. This technique makes electronic consumption of sensor node and entire network's energy consumption so that it makes effective energy management problem. Therefore, this paper suggests location based 1-hop routing technique of BS node that satisfies distance $d{\pm}{\alpha}$ with source node using RSSI and radio wave range of sensor node.

An Efficient Dynamic Prediction Clustering Algorithm Using Skyline Queries in Sensor Network Environment (센서 네트워크 환경에서 스카이라인 질의를 이용한 효율적인 동적 예측 클러스터링 기법)

  • Cho, Young-Bok;Choi, Jae-Min;Lee, Sang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.139-148
    • /
    • 2008
  • The sensor network is applied from the field which is various. The sensor network nodes are exchanged with mobile environment and they construct they select cluster and cluster headers. In this paper, we propose the Dynamic Prediction Clustering Algorithm use to Skyline queries attributes in direction, angel and hop. This algorithm constructs cluster in base mobile sensor node after select cluster header. Propose algorithm is based made cluster header for mobile sensor node. It "Adv" reduced the waste of energy which mobile sensor node is unnecessary. Respects clustering where is efficient according to hop count of sensor node made dynamic cluster. To extend a network life time of 2.4 times to decrease average energy consuming of sensor node. Also maintains dynamic cluster to optimize the within hop count cluster, the average energy specific consumption of node decreased 14%.

  • PDF

Base Station Assisted Optimization of Hierarchical Routing Protocol in Wireless Sensor Network (WSN 에서 베이스스테이션을 이용한 계층적 라우팅 프로토콜 최적화)

  • Kusdaryono, Aries;Lee, Kyoung-Oh
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.564-567
    • /
    • 2011
  • Preserving energy of sensor node in wireless sensor network is an effort to prolong the lifetime of network. Energy of sensor node is very crucial because battery powered and irreplaceable. Energy conservation of sensor node is an effort to reduce energy consumption in order to preserve resource for network lifetime. It can be achieved through efficient energy usage by reducing consumption of energy or decrease energy usage while achieving a similar outcome. In this paper, we propose optimization of energy efficient base station assisted hierarchical routing protocol in wireless sensor network, named BSAH, which use base station to controlled overhead of sensor node and create clustering to distribute energy dissipation and increase energy efficiency of all sensor node. Main idea of BSAH is based on the concept of BeamStar, which divide sensor node into group by base station uses directional antenna and maximize the computation energy in base station to reduce computational energy in sensor node for conservation of network lifetime. The performance of BSAH compared to PEGASIS and CHIRON based of hierarchical routing protocol. The simulation results show that BSAH achieve 25% and 30% of improvement on network lifetime.

A Balanced Energy Consumption Strategy using a Smart Base Station in Wireless Sensor Networks (무선 센서 네트워크에서 스마트기지국을 이용한 균형된 에너지소비 방안)

  • Park, Sun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.458-465
    • /
    • 2014
  • In this paper, we propose a strategy to distribute the energy consumption over the network. The proposed strategy is based on geographic routing. We use a smart base station that maintains the residual energy and location information of sensor nodes and selects a head node and an anchor node using this information. A head node gathers and aggregates data from the sensor nodes in a target region that interests the user. An anchor node then transmits the data that was forwarded from the head node back to the smart base station. The smart base station extends network lifetime by selecting an optimal head node and an optimal anchor node. We simulate the proposed protocol and compare it with the LEACH protocol in terms of energy consumption, the number of dead nodes, and a distribution map of dead node locations.

Design of Miniaturized Wireless Sensor Node Using System-on-Chip (SoC를 이용한 소형 무선 센서 노드 설계)

  • Kim, Hyun-Joong;Yang, Hyun-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.190-193
    • /
    • 2009
  • The most essential element in wireless sensor network is wireless sensor node which collects environmental information and transmits it to the user application systems. Recently, due to the technological advancement, wireless sensor nodes are become smaller, more intelligent and less power consuming. Especially, SoC(System-on-Chip) technology, which unifies the MCU, RF module, memory and other element inside one chip, plays an important part for miniaturization of sensor node, hence reduces the manufacturing expenses. In this paper, we have designed a miniaturized wireless sensor node for wireless sensor network using commercial SoC technology and discussed about some application scenario and additional considerations.

  • PDF

An Efficient Routing Protocol for Mobile Sinks in Sensor Networks (센서 네트워크에서 모바일 싱크를 위한 효율적인 라우팅 기법)

  • Wu, Mary
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.4
    • /
    • pp.640-648
    • /
    • 2017
  • Sensors have limited resources in sensor networks, so efficient use of energy is important. In order to use the energy of the sensor node efficiently, researches applying mobile sink to the sensor network have been actively carried out. The sink node moves the sensor network, collects data from each sensor node, which spread the energy concentrated around the sink node, thereby extending the entire life cycle of the network. But, when the sink node moves, it requires a reset of the data transmission path, which causes a lot of control messages and delays. In this paper, we propose a CMS(Cluster-based Mobile Sink) method to support the movement of mobile sink in a cluster sensor environment. The proposed scheme minimizes an amount of control messages without resetting the routing paths of entire sensor networks by supporting the sink mobility path using the neighbor cluster list. And, it simplifies the routing path setup process by setting a single hop path between clusters without a gateway. The experiment results show that the proposed scheme has superior energy efficiency in processing and network structure, compared with existing clustering and mesh routing protocols.