• 제목/요약/키워드: Sensor installation

Search Result 496, Processing Time 0.023 seconds

A study on the monitoring of high-density fine particulate matters using W-station: Case of Jeju island (W-Station을 활용한 고밀도 초미세먼지 모니터링 연구: 제주도 사례)

  • Lee, Jong-Won;Park, Moon-Soo;Won, Wan-Sik;Son, Seok-Woo
    • Particle and aerosol research
    • /
    • v.16 no.2
    • /
    • pp.31-47
    • /
    • 2020
  • Although interest in air quality has increased due to the frequent occurrence of high-concentration fine particulate matter recently, the official fine particulate matter measuring network has failed to provide spatial detailed air quality information. This is because current measurement equipment has a high cost of installation and maintenance, which limits the composition of the measuring network at high resolution. To compensate for the limitations of the current official measuring network, this study constructed a spatial high density measuring network using the fine particulate matter simple measuring device developed by Observer, W-Station. W-Station installed 48 units on Jeju Island and measured PM2.5 for six months. The data collected in W-Station were corrected by applying the first regression equation for each section, and these measurements were compared and analyzed based on the official measurements installed in Jeju Island. As a result, the time series of PM2.5 concentrations measured in W-Station showed concentration characteristics similar to those of the environmental pollution measuring network. In particular, the results of comparing the measurements of W-Station within a 2 km radius of the reference station and the reference station showed that the coefficient of determination (R2) was 0.79, 0.81, 0.67, respectively. In addition, for W-Station within a 1 km radius, the coefficient of determination was 0.85, 0.82, 0.68, respectively, showing slightly higher correlation. In addition, the local concentration deviation of some regions could be confirmed through 48 high density measuring networks. These results show that if a network of measurements is constructed with adequate spatial distribution using a number of simple meters with a certain degree of proven performance, the measurements are effective in monitoring local air quality and can be fully utilized to supplement or replace formal measurements.

Monitoring Urban Ecological corridors in Gwanggyo New Town Using Camera Trapping (카메라트래핑을 활용한 광교신도시 내 도시형 생태통로 모니터링)

  • Park, Il-Su;Kim, Whee-Moon;Kim, Seoung-Yeal;Park, Chan;Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.1
    • /
    • pp.69-80
    • /
    • 2021
  • The new town in Korea, developed as a large-scale housing plan, has created urban ecological corridors to provide habitat and movement routes to wildlife and to promote natural ecological flow. This study aimed to investigate the use of wildlife in 10 ecological corridors in Gwanggyo New Town through camera trap technology and confirm effectiveness by identifying environmental factors affecting the use of wildlife's urban ecological corridors. Our researchers installed 20 unmanned sensor cameras at each the entrance and exit of the ecological corridors, and monitored urban wildlife for 10 weeks. According to the monioring results, the main species in Gwanggyo New Town were identified not only raccons, cats, water deer, korean hare and avain but also magpies, dove, eurasian tree sparrow, ring-necked pheasant, and eurasian jay. The number of uses ecological corridors of urban residents was 801(13.49%), as high as that of urban wildlife (1,140, 19.20%), which was judged to have disturbed the use of ecological corridors by wildlife. However, most dominant species of urban wildlife are nocturnal so that, it was judged that they share home range with urban residents at a time interval. In addition, according to the correlation analysis results between the mammal using rate of the urban ecological corridors and environmental factors(ecological corridor-specific length, ecological corridor-specific width, cover degree, shielding degree, connected green area, separation of movement routes, and presence of streetlights), environmental factors were not statistically significant. However, the more the area of green space connected to ecological corridors, the more increasing the mammal using rate of ecological corridor(r=0.71, p<0.05). Therefore, the area of green space connected to the ecological corridors that is associated with rate of wildlife using corridors should be considered as a priority when developing an urban ecological corridors. In the future, this study will extend the observation period of the ecological corridors and continuously accumulate data by adding the number of observation cameras. Furthermore, it is expected that the results of this study can be used as basic data for the standards for urban ecological corridors installation.

Survey of ICT Apply to Plastic Greenhouse, Rack·Pinion Adaption to Single Span and CFD Analysis (온실 ICT융복합 실태조사와 복숭아형 랙피니언천창 적용 단동온실 및 CFD 유동해석)

  • Cho, Kyu Jeong;Kim, Ki Young;Yang, Won Mo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.308-316
    • /
    • 2015
  • This study was conducted to investigate the situation of ICT apply to plastic greenhouse, and the results be apply to design of new one. A CFD analysis were conducted to monitering the ventilation and energy saving of the single span greenhouse newly designed. The causes of delay to apply ICT to plastic greenhouse are the high cost for installation(24%), insufficiency of after services(19%), often disorder(16%), unskillful management of soft ware(15%), insufficient ICT efficiency(13%) and unsatisfying of income increase(12%). The parts of problem occurred in ICT plastic greenhouse are the structure, actuator, environmental control system and sensor(approximate 14%, respectively), remote control technique(13%), plant management technique(12%), energy saving technique(10%) and utilization of software(8%). In the condition of lateral window closed, the average wind speed changed to slow, but it was faster in the condition of leeward side window opened than in the condition of lee and winward side window opened. The air movement in the condition of lateral window closed occur by air moving fan not by out air. It is not affect the room temperature but effective the uniformity of room temperature. The average temperature of low height greenhouse was uniform than high height one. The average temperature in condition of 3rd curtain opened become same with outside temperature after 2 hours, but take more 5 hours in condition of 3rd curtain closed.

A Study on Intuitive IoT Interface System using 3D Depth Camera (3D 깊이 카메라를 활용한 직관적인 사물인터넷 인터페이스 시스템에 관한 연구)

  • Park, Jongsub;Hong, June Seok;Kim, Wooju
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.2
    • /
    • pp.137-152
    • /
    • 2017
  • The decline in the price of IT devices and the development of the Internet have created a new field called Internet of Things (IoT). IoT, which creates new services by connecting all the objects that are in everyday life to the Internet, is pioneering new forms of business that have not been seen before in combination with Big Data. The prospect of IoT can be said to be unlimited in its utilization. In addition, studies of standardization organizations for smooth connection of these IoT devices are also active. However, there is a part of this study that we overlook. In order to control IoT equipment or acquire information, it is necessary to separately develop interworking issues (IP address, Wi-Fi, Bluetooth, NFC, etc.) and related application software or apps. In order to solve these problems, existing research methods have been conducted on augmented reality using GPS or markers. However, there is a disadvantage in that a separate marker is required and the marker is recognized only in the vicinity. In addition, in the case of a study using a GPS address using a 2D-based camera, it was difficult to implement an active interface because the distance to the target device could not be recognized. In this study, we use 3D Depth recognition camera to be installed on smartphone and calculate the space coordinates automatically by linking the distance measurement and the sensor information of the mobile phone without a separate marker. Coordination inquiry finds equipment of IoT and enables information acquisition and control of corresponding IoT equipment. Therefore, from the user's point of view, it is possible to reduce the burden on the problem of interworking of the IoT equipment and the installation of the app. Furthermore, if this technology is used in the field of public services and smart glasses, it will reduce duplication of investment in software development and increase in public services.

Evaluation of Drainage Improvement Effect Using Geostatistical Analysis in Poorly Drained Sloping Paddy Soil (경사지 배수불량 논에서 배수개선 효과의 지구통계적 기법을 이용한 평가)

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Ki-Do;Park, Chang-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.804-811
    • /
    • 2010
  • The lower portion of sloping paddy fields normally contains excessive moisture and the higher water table caused by the inflow of ground water from the upper part of the field resulting in non-uniform water content distribution. Four drainage methods namely Open Ditch, Vinyl Barrier, Pipe Drainage and Tube Bundle for multiple land use were installed within 1-m position from the lower edge of the upper embankment of sloping alluvial paddy fields. Knowledge of the spatial variability of soil water properties is of primary importance for management of agricultural lands. This study was conducted to evaluate the effect of drainage in the soil on spatial variability of soil water content using the geostatistical analysis. The soil water content was collected by a TDR (Time Domain Reflectometry) sensor after the installation of subsurface drainage on regular square grid of 80 m at 20 m paddy field located at Oesan-ri, Buk-myeon, Changwon-si in alluvial slopping paddy fields ($35^{\circ}22^{\prime}$ N, $128^{\circ}35^{\prime}$). In order to obtain the most accurate field information, the sampling grid was divided 3 m by 3 m unit mesh by four drainage types. The results showed that spatial variance of soil water content by subsurface drainage was reduced, though yield of soybean showed the same trends. Value of "sill" of soil water content with semivariogram was 9.7 in Pipe Drainage, 86.2 in Open Ditch, and 66.8 in Vinyl Barrier and 15.7 in Tube Bundle.

Analysis of Heating Effect of an Infrared Heating System in a Small Venlo-type Glasshouse (소형 벤로형 유리온실에서 적외선등 난방 시스템의 난방효과 분석)

  • Lim, Mi Young;Ko, Chung Ho;Lee, Sang Bok;Kim, Hyo Kyeong;Bae, Yong Han;Kim, Young Bok;Yoon, Yong Cheol;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.3
    • /
    • pp.186-192
    • /
    • 2010
  • An infrared heating system, installed in a small venlo-type glasshouse ($280m^2$) in Gyeongsang National University, Jinju, Korea, was used to investigate its heating effect with potted Phalaenopsis, Schefflera arboricola 'Hongkong', Ficus elastica 'Variegata', and Rosa hybrida 'Yellow King' as the test plants. Temperature changes in test plants with the system turned 'On' and 'Off' were measured by using an infrared camera and the consumption of electricity by this infrared heating system was measured and analyzed. In potted Phalaenopsis, when the set air temperature of the greenhouse was $18^{\circ}C$, temperature of leaves and the growing medium were $22.8{\sim}27^{\circ}C$ and $21.3{\sim}24.3^{\circ}C$, respectively. In such tall plants as Schefflera arboricola 'Hongkong' and Ficus elastica 'Variegata', the upper part showed the highest temperature of 24.0 and $26.9^{\circ}C$, respectively. From the results of temperature change measurements, the plant temperatures were near or above the set point temperatures with some fluctuations depending on the position or distance from the infrared heating system. When air temperature between night and dawn dropped sharply, plant temperatures were maintained close to the set temperature ($18^{\circ}C$). There was a significant difference between 'On' and 'Off' states of the infrared heating system in average temperatures of root zone and leaf: 21.8 and $17.8^{\circ}C$ with the system 'On' and 20.4 and $15.5^{\circ}C$ with the system 'Off', respectively, in a cut rose Rosa hybrida 'Yellow King'. The heating load was about $24,850{\sim}35,830kcal{\cdot}h^{-1}$, which comes to about 27,000~40,000 won in Korean currency when calculated in terms of the cost of heating by a hot water heating system heated by petroleum. The cost for heating by the infrared heating system was about 35% of that of a hot water heating system. With the infrared heating system, the air temperature during the night was maintained slightly lower than the set point air temperature, probably due to the lack of air tightness of the glasshouse. Therefore, glasshouses with an infrared heating system requires further investigation including the installation space of the heat-emitting units, temperature sensor positions, and convection.