• Title/Summary/Keyword: Sensor information

Search Result 10,197, Processing Time 0.035 seconds

Detection of Wildfire Smoke Plumes Using GEMS Images and Machine Learning (GEMS 영상과 기계학습을 이용한 산불 연기 탐지)

  • Jeong, Yemin;Kim, Seoyeon;Kim, Seung-Yeon;Yu, Jeong-Ah;Lee, Dong-Won;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.967-977
    • /
    • 2022
  • The occurrence and intensity of wildfires are increasing with climate change. Emissions from forest fire smoke are recognized as one of the major causes affecting air quality and the greenhouse effect. The use of satellite product and machine learning is essential for detection of forest fire smoke. Until now, research on forest fire smoke detection has had difficulties due to difficulties in cloud identification and vague standards of boundaries. The purpose of this study is to detect forest fire smoke using Level 1 and Level 2 data of Geostationary Environment Monitoring Spectrometer (GEMS), a Korean environmental satellite sensor, and machine learning. In March 2022, the forest fire in Gangwon-do was selected as a case. Smoke pixel classification modeling was performed by producing wildfire smoke label images and inputting GEMS Level 1 and Level 2 data to the random forest model. In the trained model, the importance of input variables is Aerosol Optical Depth (AOD), 380 nm and 340 nm radiance difference, Ultra-Violet Aerosol Index (UVAI), Visible Aerosol Index (VisAI), Single Scattering Albedo (SSA), formaldehyde (HCHO), nitrogen dioxide (NO2), 380 nm radiance, and 340 nm radiance were shown in that order. In addition, in the estimation of the forest fire smoke probability (0 ≤ p ≤ 1) for 2,704 pixels, Mean Bias Error (MBE) is -0.002, Mean Absolute Error (MAE) is 0.026, Root Mean Square Error (RMSE) is 0.087, and Correlation Coefficient (CC) showed an accuracy of 0.981.

Comparison of Environment, Growth, and Management Performance of the Standard Cut Chrysanthemum 'Jinba' in Conventional and Smart Farms

  • Roh, Yong Seung;Yoo, Yong Kweon
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.655-665
    • /
    • 2020
  • Background and objective: This study was conducted to compare the cultivation environment, growth of cut flowers, and management performance of conventional farms and smart farms growing the standard cut chrysanthemum, 'Jinba'. Methods: Conventional and smart farms were selected, and facility information, cultivation environment, cut flower growth, and management performance were investigated. Results: The conventional and smart farms were located in Muan, Jeollanam-do, and conventional farming involved cultivating with soil culture in a plastic greenhouse, while the smart farm was cultivating with hydroponics in a plastic greenhouse. The conventional farm did not have sensors for environmental measurement such as light intensity and temperature and pH and EC sensors for fertigation, and all systems, including roof window, side window, thermal screen, and shading curtain, were operated manually. On the other hand, the smart farm was equipped with sensors for measuring the environment and nutrient solution, and was automatically controlled. The day and night mean temperatures, relative humidity, and solar radiation in the facilities of the conventional and the smart farm were managed similarly. But in the floral differentiation stage, the floral differentiation was delayed, as the night temperature of conventional farm was managed as low as 17.7℃ which was lower than smart farm. Accordingly, the harvest of cut flowers by the conventional farm was delayed to 35 days later than that of the smart farm. Also, soil moisture and EC of the conventional farm were unnecessarily kept higher than those of the smart farm in the early growth stage, and then were maintained relatively low during the period after floral differentiation, when a lot of water and nutrients were required. Therefore, growth of cut flower, cut flower length, number of leaves, flower diameter, and weight were poorer in the conventional farm than in the smart farm. In terms of management performance, yield and sales price were 10% and 38% higher for the smart farm than for the conventional farm, respectively. Also, the net income was 2,298 thousand won more for the smart farm than for the conventional farm. Conclusion: It was suggested that the improved growth of cut flowers and high management performance of the smart farm were due to precise environment management for growth by the automatic control and sensor.

Design of Calibration and Validation Area for Forestry Vegetation Index from CAS500-4 (농림위성 산림분야 식생지수 검보정 사이트 설계)

  • Lim, Joongbin;Cha, Sungeun;Won, Myoungsoo;Kim, Joon;Park, Juhan;Ryu, Youngryel;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.311-326
    • /
    • 2022
  • The Compact Advanced Satellite 500-4 (CAS500-4) is under development to efficiently manage and monitor forests in Korea and is scheduled to launch in 2025. The National Institute of Forest Science is developing 36 types of forestry applications to utilize the CAS500-4 efficiently. The products derived using the remote sensing method require validation with ground reference data, and the quality monitoring results for the products must be continuously reported. Due to it being the first time developing the national forestry satellite, there is no official calibration and validation site for forestry products in Korea. Accordingly, the author designed a calibration and validation site for the forestry products following international standards. In addition, to install calibration and validation sites nationwide, the authors selected appropriate sensors and evaluated the applicability of the sensors. As a result, the difference between the ground observation data and the Sentinel-2 image was observed to be within ±5%, confirming that the sensor could be used for nationwide expansion.

Grasping a Target Object in Clutter with an Anthropomorphic Robot Hand via RGB-D Vision Intelligence, Target Path Planning and Deep Reinforcement Learning (RGB-D 환경인식 시각 지능, 목표 사물 경로 탐색 및 심층 강화학습에 기반한 사람형 로봇손의 목표 사물 파지)

  • Ryu, Ga Hyeon;Oh, Ji-Heon;Jeong, Jin Gyun;Jung, Hwanseok;Lee, Jin Hyuk;Lopez, Patricio Rivera;Kim, Tae-Seong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.9
    • /
    • pp.363-370
    • /
    • 2022
  • Grasping a target object among clutter objects without collision requires machine intelligence. Machine intelligence includes environment recognition, target & obstacle recognition, collision-free path planning, and object grasping intelligence of robot hands. In this work, we implement such system in simulation and hardware to grasp a target object without collision. We use a RGB-D image sensor to recognize the environment and objects. Various path-finding algorithms been implemented and tested to find collision-free paths. Finally for an anthropomorphic robot hand, object grasping intelligence is learned through deep reinforcement learning. In our simulation environment, grasping a target out of five clutter objects, showed an average success rate of 78.8%and a collision rate of 34% without path planning. Whereas our system combined with path planning showed an average success rate of 94% and an average collision rate of 20%. In our hardware environment grasping a target out of three clutter objects showed an average success rate of 30% and a collision rate of 97% without path planning whereas our system combined with path planning showed an average success rate of 90% and an average collision rate of 23%. Our results show that grasping a target object in clutter is feasible with vision intelligence, path planning, and deep RL.

LSTM-based Fire and Odor Prediction Model for Edge System (엣지 시스템을 위한 LSTM 기반 화재 및 악취 예측 모델)

  • Youn, Joosang;Lee, TaeJin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.2
    • /
    • pp.67-72
    • /
    • 2022
  • Recently, various intelligent application services using artificial intelligence are being actively developed. In particular, research on artificial intelligence-based real-time prediction services is being actively conducted in the manufacturing industry, and the demand for artificial intelligence services that can detect and predict fire and odors is very high. However, most of the existing detection and prediction systems do not predict the occurrence of fires and odors, but rather provide detection services after occurrence. This is because AI-based prediction service technology is not applied in existing systems. In addition, fire prediction, odor detection and odor level prediction services are services with ultra-low delay characteristics. Therefore, in order to provide ultra-low-latency prediction service, edge computing technology is combined with artificial intelligence models, so that faster inference results can be applied to the field faster than the cloud is being developed. Therefore, in this paper, we propose an LSTM algorithm-based learning model that can be used for fire prediction and odor detection/prediction, which are most required in the manufacturing industry. In addition, the proposed learning model is designed to be implemented in edge devices, and it is proposed to receive real-time sensor data from the IoT terminal and apply this data to the inference model to predict fire and odor conditions in real time. The proposed model evaluated the prediction accuracy of the learning model through three performance indicators, and the evaluation result showed an average performance of over 90%.

A Basic Study on the Reduction of Illuminated Reflection for improving the Safety of Self-driving at Night (야간 자율주행 안전성 향상을 위한 조명반사광 감소에 관한 기초연구)

  • Park, Chang min
    • Journal of Platform Technology
    • /
    • v.10 no.3
    • /
    • pp.60-68
    • /
    • 2022
  • As AI-technology develops, interest in the safety of autonomous driving is increasing. Recently, autonomous vehicles have been increasing, but efforts to solve side effects have been sluggish. In particular, night autonomous vehicles have more problems. This is because the probability of accidents is higher in the night driving environment than in the day environment. There are more factors to consider for self-driving at night. Among these factors, reflection of light or reflected light of lighting may be a fundamental cause of night accidents. Therefore, this study proposes method to reduce accidents and improve safety by reducing reflected light generated by the headlights of opposite vehicles or various surrounding light that appear as an important problem in night autonomous vehicles. Therefore, first, in an image obtained by a sensor of a night autonomous vehicle, illumination reflected light is extracted using reflected light characteristic information, and a color of each pixel using a reflection coefficient is found to reduce a special area generated by geometric characteristics. In addition, we find a new area using only the brightness component of the specular area, define it as Illuminated Reflection Light (IRL), and finally present a method to reduce it. Although the illumination reflection light could not be completely reduce, generally satisfactory results could be obtained. Therefore, it is believed that the proposed study can reduce casualties by solving the problems of night autonomous driving and improving safety.

Development of Automated Statistical Analysis Tool using Measurement Data in Cable-Supported Bridges (특수교 계측 데이터 자동 통계 분석 툴 개발)

  • Kim, Jaehwan;Park, Sangki;Jung, Kyu-San;Seo, Dong-Woo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.79-88
    • /
    • 2022
  • Cable-supported bridges, as important large infrastructures, require a long-term and systematic maintenance strategy. In particular, various methods have been proposed to secure safety for the bridges, such as installing various types of sensor on members in the bridges, and setting management thresholds. It is evidently necessary to propose a strategic plan to efficiently manage increasing number of cable-supported bridges and data collected from a number of sensors. This study aims to develop an analysis tool that can automatically remove abnormal signals and calculate statistical results for the purpose of efficiently analyzing a wide range of data collected from a long span bridge measurement system. To develop the tool, basic information such as the types and quantity of sensors installed in long span bridges and signal characteristics of the collected data were analyzed. Thereafter, the Humpel filtering method was used to determine the presence or absence of an abnormality in the signal and then filtered. The statistical results with filtered data were shown. Finally, one cable-stayed bridge and one suspension bridge currently in use were chosen as the target bridges to verify the performance of the developed tool. Signal processing and statistical analysis with the tool were performed. The results are similar to the results reported in the existing work.

Analysis of Remote Driving Simulation Performance for Low-speed Mobile Robot under V2N Network Delay Environment (V2N 네트워크 지연 환경에서 저속 이동 로봇 원격주행 모의실험을 통한 성능 분석)

  • Song, Yooseung;Min, Kyoung-wook;Choi, Jeong Dan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.3
    • /
    • pp.18-29
    • /
    • 2022
  • Recently, cooperative intelligent transport systems (C-ITS) testbeds have been deployed in great numbers, and advanced autonomous driving research using V2X communication technology has been conducted actively worldwide. In particular, the broadcasting services in their beginning days, giving warning messages, basic safety messages, traffic information, etc., gradually developed into advanced network services, such as platooning, remote driving, and sensor sharing, that need to perform real-time. In addition, technologies improving these advanced network services' throughput and latency are being developed on many fronts to support these services. Notably, this research analyzed the network latency requirements of the advanced network services to develop a remote driving service for the droid type low-speed robot based on the 3GPP C-V2X communication technology. Subsequently, this remote driving service's performance was evaluated using system modeling (that included the operator behavior) and simulation. This evaluation showed that a respective core and access network latency of less than 30 ms was required to meet more than 90 % of the remote driving service's performance requirements under the given test conditions.

A Study on Developing Low Altitude Multi-layer Air Defense System to Protect Megacities in the Korean Peninsula (한국형 메가시티 저고도 다중방공체계 구축 방안)

  • Sin, Ui-Cheol;Cho, Sang Keun;Park, Sung Jun;Sim, Jun Hak;Koo, Ja Hong;Park, Sang-Hyuk
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.393-398
    • /
    • 2022
  • Megacities of the Repulic of Korea(ROK) will have increased by urbanization and the fourth industrial revolution. Mgacities are absolutely the opportunity factor to make human life enriched. Simultaneously, those are the challenge foctor considering the crucial conventional threat such as massive artillery and multiple rocket launcher from the North Korea. Israel that has faced the geopolitical situation of ROK developed the Multi-layer air defense system to offset the low altitude threat from the neighboring nations. As a result, Israel substantially removed plenty of Hamas' rockes and suicidal drones in 2021. Applying Israel's concept, North Korea's low altitude threat toward the ROK's megacities can effectively be eliminated. Furthermore, this Multi-layer air defense system can be a game-changer that gets rid of the low and high altitude threat from North Korea and neighboring nations with both hyperconnected sensor-C2-shooter and artificial intelligence. Through this approach, the ROK will be able to achieve the prosperity and prowth of nation at the center of Megacities concentrated on PMESII(Politics, Military, Economy, Society, Information, and Infrastructure) factors.

A Study on Transport Robot for Autonomous Driving to a Destination Based on QR Code in an Indoor Environment (실내 환경에서 QR 코드 기반 목적지 자율주행을 위한 운반 로봇에 관한 연구)

  • Se-Jun Park
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.26-38
    • /
    • 2023
  • This paper is a study on a transport robot capable of autonomously driving to a destination using a QR code in an indoor environment. The transport robot was designed and manufactured by attaching a lidar sensor so that the robot can maintain a certain distance during movement by detecting the distance between the camera for recognizing the QR code and the left and right walls. For the location information of the delivery robot, the QR code image was enlarged with Lanczos resampling interpolation, then binarized with Otsu Algorithm, and detection and analysis were performed using the Zbar library. The QR code recognition experiment was performed while changing the size of the QR code and the traveling speed of the transport robot while the camera position of the transport robot and the height of the QR code were fixed at 192cm. When the QR code size was 9cm × 9cm The recognition rate was 99.7% and almost 100% when the traveling speed of the transport robot was less than about 0.5m/s. Based on the QR code recognition rate, an experiment was conducted on the case where the destination is only going straight and the destination is going straight and turning in the absence of obstacles for autonomous driving to the destination. When the destination was only going straight, it was possible to reach the destination quickly because there was little need for position correction. However, when the destination included a turn, the time to arrive at the destination was relatively delayed due to the need for position correction. As a result of the experiment, it was found that the delivery robot arrived at the destination relatively accurately, although a slight positional error occurred while driving, and the applicability of the QR code-based destination self-driving delivery robot was confirmed.

  • PDF