• Title/Summary/Keyword: Sensor fusion

Search Result 818, Processing Time 0.023 seconds

Land cover classification of a non-accessible area using multi-sensor images and GIS data (다중센서와 GIS 자료를 이용한 접근불능지역의 토지피복 분류)

  • Kim, Yong-Min;Park, Wan-Yong;Eo, Yang-Dam;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.493-504
    • /
    • 2010
  • This study proposes a classification method based on an automated training extraction procedure that may be used with very high resolution (VHR) images of non-accessible areas. The proposed method overcomes the problem of scale difference between VHR images and geographic information system (GIS) data through filtering and use of a Landsat image. In order to automate maximum likelihood classification (MLC), GIS data were used as an input to the MLC of a Landsat image, and a binary edge and a normalized difference vegetation index (NDVI) were used to increase the purity of the training samples. We identified the thresholds of an NDVI and binary edge appropriate to obtain pure samples of each class. The proposed method was then applied to QuickBird and SPOT-5 images. In order to validate the method, visual interpretation and quantitative assessment of the results were compared with products of a manual method. The results showed that the proposed method could classify VHR images and efficiently update GIS data.

Basket ball motion recognition using a 3-axis accelerometer sensor of smart phone (스마트폰의 3축 가속도 센서를 이용한 농구 자세 인식)

  • Ho, Jong-Gab;Lee, Sang-Jun;Wang, Chang-Won;Jung, Hwa-Yung;Na, Ye-Ji;Min, Se-dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1372-1374
    • /
    • 2015
  • 본 논문에서는 농구 경기에서의 대표적 자세 중 Standing shoot, Jump shoot, Pass, Dribble, Lay-up shoot, 총 5가지 자세를 인식하기 위해 각 자세와 3축 가속도 값과의 상관관계를 보여주고 있다. 스마트폰에 내장되어 있는 가속도 센서로부터 데이터를 생성해주는 어플리케이션인 Sensor log를 활용하여 얻은 3축 가속도 값으로 수직, 수평축과 3축 가속도의 크기를 구해 Instance로 사용하였다. 위 데이터는 대표적인 데이터 마이닝 도구인 Weka tool을 이용하여 각 모션과 데이터 값의 상관관계를 확인하였고, 실험 결과 10-fold에서 평균 59.8%를 보였으나 Training set과 Test set의 결과 80.8%를 보였다.

Estimation of fresh weight for chinese cabbage using the Kinect sensor (키넥트를 이용한 배추 생체중 추정)

  • Lee, Sukin;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.205-213
    • /
    • 2018
  • Development and validation of crop models often require measurements of biomass for the crop of interest. Considerable efforts would be needed to obtain a reasonable amount of biomass data because the destructive sampling of a given crop is usually used. The Kinect sensor, which has a combination of image and depth sensors, can be used for estimating crop biomass without using destructive sampling approach. This approach could provide more data sets for model development and validation. The objective of this study was to examine the applicability of the Kinect sensor for estimation of chinese cabbage fresh weight. The fresh weight of five chinese cabbage was measured and compared with estimates using the Kinect sensor. The estimates were obtained by scanning individual chinese cabbage to create point cloud, removing noise, and building a three dimensional model with a set of free software. It was found that the 3D model created using the Kinect sensor explained about 98.7% of variation in fresh weight of chinese cabbage. Furthermore, the correlation coefficient between estimates and measurements were highly significant, which suggested that the Kinect sensor would be applicable to estimation of fresh weight for chinese cabbage. Our results demonstrated that a depth sensor allows for a non-destructive sampling approach, which enables to collect observation data for crop fresh weight over time. This would help development and validation of a crop model using a large number of reliable data sets, which merits further studies on application of various depth sensors to crop dry weight measurements.

Real-time and Parallel Semantic Translation Technique for Large-Scale Streaming Sensor Data in an IoT Environment (사물인터넷 환경에서 대용량 스트리밍 센서데이터의 실시간·병렬 시맨틱 변환 기법)

  • Kwon, SoonHyun;Park, Dongwan;Bang, Hyochan;Park, Youngtack
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.54-67
    • /
    • 2015
  • Nowadays, studies on the fusion of Semantic Web technologies are being carried out to promote the interoperability and value of sensor data in an IoT environment. To accomplish this, the semantic translation of sensor data is essential for convergence with service domain knowledge. The existing semantic translation technique, however, involves translating from static metadata into semantic data(RDF), and cannot properly process real-time and large-scale features in an IoT environment. Therefore, in this paper, we propose a technique for translating large-scale streaming sensor data generated in an IoT environment into semantic data, using real-time and parallel processing. In this technique, we define rules for semantic translation and store them in the semantic repository. The sensor data is translated in real-time with parallel processing using these pre-defined rules and an ontology-based semantic model. To improve the performance, we use the Apache Storm, a real-time big data analysis framework for parallel processing. The proposed technique was subjected to performance testing with the AWS observation data of the Meteorological Administration, which are large-scale streaming sensor data for demonstration purposes.

Two Stage Kalman Filter based Dynamic Displacement Measurement System for Civil Infrastructures (이단계 칼만필터를 활용한 사회기반 건설구조물의 3자유도 동적변위 계측 시스템)

  • Chung, Junyeon;Choi, Jaemook;Kim, Kiyoung;Sohn, Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.3
    • /
    • pp.141-145
    • /
    • 2018
  • The paper presents a new dynamic displacement measurement system. The developed displacement measurement system consists of a sensor module, a base module and a computation module. The sensor module, which contains a force-balanced accelerometer and low-price RTK-GNSS, measures the high-precision acceleration with sampling frequency of 100Hz, the low-precision displacement and velocity with sampling frequency of 10Hz. The measured data is transferred to the computation module through LAN cable, and precise displacement is estimated in real-time with 100Hz sampling frequency through a two stage Kalman filter. The field test was conducted at San Francisco-Oaklmand Bay bridge, CA, USA to verify the precision of the developed system, and it showed the RMSE was 1.68mm.

A Study on the A·R type Monitoring Technique using QR-code and Environment Monitoring Sensor Based on Smart Device (QR코드와 환경감시센서를 활용한 스마트 디바이스기반 증강현실형 환경모니터링 기술 연구)

  • Kim, Chan;Shin, Jaekwon;Cha, Jaesang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.261-265
    • /
    • 2012
  • The applications of augmented reality technology is increasing in the several field by IT convergence and we find augmented reality application easily in the smart device application area. And then, to attempt to use augmented reality technology in advantage, exhibitions and performances was activated. However, it less than other fields of augmented reality technology expertise yet. Among them services to Use in fusion with monitoring are lacking. In this paper, we proposed the augmented reality monitoring technology based on smart device. It is able to incorporate QR-code which is already building for the purpose of advertising promotional materials with augmented reality technology in many areas. Therefore, it is able to utilize unattended building or automation equipment facilities using QR-code and environmental monitoring sensor in the industry.

3D Object Location Identification Using Finger Pointing and a Robot System for Tracking an Identified Object (손가락 Pointing에 의한 물체의 3차원 위치정보 인식 및 인식된 물체 추적 로봇 시스템)

  • Gwak, Dong-Gi;Hwang, Soon-Chul;Ok, Seo-Won;Yim, Jung-Sae;Kim, Dong Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.703-709
    • /
    • 2015
  • In this work, a robot aimed at grapping and delivering an object by using a simple finger-pointing command from a hand- or arm-handicapped person is introduced. In this robot system, a Leap Motion sensor is utilized to obtain the finger-motion data of the user. In addition, a Kinect sensor is also used to measure the 3D (Three Dimensional)-position information of the desired object. Once the object is pointed at through the finger pointing of the handicapped user, the exact 3D information of the object is determined using an image processing technique and a coordinate transformation between the Leap Motion and Kinect sensors. It was found that the information obtained is transmitted to the robot controller, and that the robot eventually grabs the target and delivers it to the handicapped person successfully.

Development of a Sensor Fusion System for Visible Ray and Infrared (적외선 및 가시광선의 센서 융합시스템의 개발)

  • Kim, Dae-Won;Kim, Mo-Gon;Nam, Dong-Hwan;Jung, Soon-Ki;Lim, Soon-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.44-50
    • /
    • 2000
  • Every object emits some energy from its surface. The emission energy forms surface heat distribution which we can capture by using an infrared thermal imager. The infrared thermal image may include valuable information regarding to the subsurface anomaly of the object. Since a thermal image reflects surface clutter and subsurface anomaly, we have difficulty in extracting the information on the subsurface anomaly only with thermal images taken under a wavelength. Thus, we use visible wavelength images of the object surface to remove exterior clutter. We, therefore in this paper, visualize the infrared image for overlaying it with a visible wavelength image. First, we make an interpolated image from two ordinary images taken from both sides of an infrared sensor. Next, we overlay the intermediate image with an infrared image taken from the infrared camera. The technique suggested in this paper can be utilized for analyzing the infrared images on non-destructive inspection against disaster and for safety.

  • PDF

Error Minimization of Angular Velocity using Encoders and Gyro (엔코더와 자이로를 이용한 각속도 오차 최소화)

  • Kim, Jung-Min;Do, Joo-Cheol;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.814-819
    • /
    • 2010
  • This paper is presented to study the error minimization of angular velocity for AGV(autonomous ground vehicle). The error minimization of angular velocity is related to localization technique which is the most important technique for autonomous vehicle. Accelerometer, yaw gyro and electronic compass have been used to measure angular velocity. And methods for error minimization of angular velocity have been actively studied through probabilistic methods and sensor fusion for AGVs. However, those sensors still occure accumulated error by mathematical error, system characters of each sensor, and computational cost are increased greatly when several sensor are used to correct accumulated error. Therefore, this paper studies about error minimization of angular velocity that just uses encoder and gyro. To experiment, we use autonomous vehicle which is made by ourselves. In experimental result, we verified that the localization error of proposed method has even less than the localization errors which we just used encoder and gyro respectively.

Design and Implementation of a WiFi Trashcan based on Arduino (아두이노 기반 WiT(WiFi Trashcan)의 설계 및 구현)

  • Yoo, Jong-Yeol;Kim, Hyun-Il;Lee, Jang-Ho;Yang, Dong-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2143-2148
    • /
    • 2016
  • Recently due to development of IT technology, ideas and technology that blend with environment have evolved. This technology can help people's living environment and in the future it is an essential component of the connected society. In this paper, we propose WiT(WiFI Trashcan) which takes advantage of the IT technology fusion and environmental factors at the same time to create a more pleasant environment. WiT provides a free WiFi when trash is disposed in the trash can. WiT detects whether a user disposes trash, determines the volume of the trash and provides free WiFi. To detect trash we use ultrasonic sensor and trash weight is measured by using weight sensor. Also by using Phython programming the measured sensor value is transmitted to Raspberry Pie and WiFi delivery time is determined. We used Arduino and Raspberry Pi to design and implement WiT.