• Title/Summary/Keyword: Sensor drift

Search Result 164, Processing Time 0.023 seconds

MISFET type H2 sensor using pd-black catalytic metal gate for high performance (Pd-black 촉매금속 이용한 고성능 MISFET 형 수소센서)

  • Kang, Ki-Ho;Cho, Yong-Soo;Han, Sang-Do;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.90-96
    • /
    • 2006
  • We have fabricated the Pd-blck/NiCr gate MISFET-type $H_2$ sensor to detect the hydrogen in atmosphere. A differential pair-type structure was used to minimize the intrinsic voltage drift of the MISFET. The Pd-black film was deposited in the argon environment by thermal evaporation. In order to eliminate the blister formation in the surface of the hydrogen sensing gate metal, Pd-black/NiCr double metal layer was deposited on the gate insulator. The scanning electron microscopy and the auger electron spectroscopy was used to analyze their surface morphology and basic structure. The Pd-black/NiCr gate MISFET has been shown high sensitivity and stability more than Pd-planar/NiCr gate MISFET.

A Time Synchronization Protocol of Sensor Nodes Combining Flooding-Routing Protocol with Bidirectional LTS (플러딩 라우팅 프로토콜과 양방향 LTS를 결합한 센서 노드의 시간 동기화 기법)

  • Shin, Jae-Hyuck;Oh, Hyun-Su;Jeon, Joong-Nam
    • The KIPS Transactions:PartC
    • /
    • v.18C no.2
    • /
    • pp.119-126
    • /
    • 2011
  • In wireless sensor networks Time synchronization used to be performed after routing tree is constructed. It results in increasing the number of packets and energy consumption. In this paper, we propose a time synchronization algorithm combined with flooding routing tree construction algorithm, which applies LTS (Lightweight Time Synchronization) information packed into the forwarding and backward routing packets. Furthermore, the proposed algorithm compensates the time error due to clock drift using the round time with fixed period. We prove that the proposed algorithm could synchronize the time of among sensor nodes more accurately compared to TSRA (Time Synchronization Routing Algorithm) using NS2 simulation tool.

Sensor Fault Detection Scheme based on Deep Learning and Support Vector Machine (딥 러닝 및 서포트 벡터 머신기반 센서 고장 검출 기법)

  • Yang, Jae-Wan;Lee, Young-Doo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.185-195
    • /
    • 2018
  • As machines have been automated in the field of industries in recent years, it is a paramount importance to manage and maintain the automation machines. When a fault occurs in sensors attached to the machine, the machine may malfunction and further, a huge damage will be caused in the process line. To prevent the situation, the fault of sensors should be monitored, diagnosed and classified in a proper way. In the paper, we propose a sensor fault detection scheme based on SVM and CNN to detect and classify typical sensor errors such as erratic, drift, hard-over, spike, and stuck faults. Time-domain statistical features are utilized for the learning and testing in the proposed scheme, and the genetic algorithm is utilized to select the subset of optimal features. To classify multiple sensor faults, a multi-layer SVM is utilized, and ensemble technique is used for CNN. As a result, the SVM that utilizes a subset of features selected by the genetic algorithm provides better performance than the SVM that utilizes all the features. However, the performance of CNN is superior to that of the SVM.

Signal Stabilization of Optical Fiber Acoustic Sensor Using a Cylindrical Piezoelectric Stretcher (원통형 압전신장기를 이용한 광섬유 음향센서의 신호안정화)

  • Lee, D.-H.;Jho, M.-J.;Suh, S.-J.;Eun, H.-J
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.75-80
    • /
    • 1989
  • A Mach-Zehnder interferometer using single mode optical fiber was constructed which operates in homodyne detection scheme. Its response to air-borne soun pressure was examined experimentally. A signal stabilizer was developed for maintaining optical fiber interferometer in quadrature condition using a cylindrical piezoelectric stretcher. This maintains the optical fiber sensor at a maximum sensitivity in the presence of the phase drift caused by temperature fluctuation and other types of environmental disturbances.

  • PDF

Implementation of an Improved Time Synchronization in Wireless Sensor Networks (무선 센서 네트워크에서의 개선된 시각 동기화 구현)

  • Bang, Sangwon;Sohn, Surgwon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.69-72
    • /
    • 2013
  • 본 논문은 TPSN 알고리즘의 시각 동기화 오차를 개선하기 위하여 Imote2 센서 노드의 클럭 드리프트 특성을 적용하는 개선된 TPSN 알고리즘을 제안한다. 클럭 드리프트의 원인은 주로 수정발진기에 기인한다. 본 연구에서는 온도 및 습도 등 환경 조건이 비슷할 경우에 드리프트가 크게 차이나지 않는다는 실험 결과에 따라 드리프트의 평균값을 구하고 이를 TPSN 동기화 오차 보정에 사용한다. 이때 적용되는 드리프트 특성 값은 센서 노드 설치 이전에 미리 측정하여야 한다. 실험을 통하여 본 논문에서 제안한 개선된 TPSN 알고리즘이 동기화 오차 개선에 효과적임을 확인하였다.

  • PDF

Double Electro-Magnetic Force Compensation Method for the Micro Force Measurement (미소 힘 측정을 위한 이중 전자기힘 보상방법)

  • 최임묵;우삼용;김부식;김수현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.104-111
    • /
    • 2003
  • Micro force measurement is required more frequently for a precision manufacturing and investment in fields of precision industries such as semiconductor, chemistry and biology, and so forth. Null balance method has been introduced as an alternative of a loadcell. Loadcells have advantages in aspects of low cost and easy manufacturing, but have also the limitation in resolution and sensitivity to environment variations. In this paper, null balance method is explained and the dominant parameters related to system performances are mentioned. Null position sensor, electromagnetic system and controller are investigated. Also, the characteristic experiment is carried out in order to estimate the resolution and the measurement range. In order to overcome the limitation by the drift of position sensor and the performance of controller, double electromagnetic force compensation method is proposed and experimented. After controlling and filtering, the resolution under $\pm$ 1mg and measurement range over 300g could be obtained.

The design of XYZ 3-axis stage for AFM system (AFM 시스템을 위한 XYZ 3축 스테이지의 설계)

  • 김동민;김기현;심종엽;권대갑;엄천일
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.36-36
    • /
    • 2002
  • To Establish of standard technique of length measurent in 2D plane, we develope AFM system. The XY scanner scans the sample only in XY plane, while the Z scanner scans the specimen only in Z-direction. Cantilever tip is controlled to has constant height relative to speciman surface by feedback of PSPD signal. To acquire high accuracy, Z-axis measuring sensor will be added.(COXI or others). In this paper we design XYZ stage suitable for this AEM system. For XY stage, single module parallel-kinnematic flexure stage is used which has high orthogonality and minimum out-of-plane motion. To obtain best performance optimal design is performed. For XY stage, to be robust about parasitic motion optimal design of maximizing Z and tilt stiffness is performed under the constraint of motion range and stage size. And for Z stage, optimal design of maximizing 1st resonant frequency is performed. Because if resonant frequency is get higher, scan speed is improved. So it makes reduce the error by sensor drift. Resultly XYZ stage each have 1st natural frequency of 115㎐, 201㎐, 2.66㎑ and range 109㎛, 110㎛, 12㎛.

  • PDF

Development of Visual Odometry Estimation for an Underwater Robot Navigation System

  • Wongsuwan, Kandith;Sukvichai, Kanjanapan
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.216-223
    • /
    • 2015
  • The autonomous underwater vehicle (AUV) is being widely researched in order to achieve superior performance when working in hazardous environments. This research focuses on using image processing techniques to estimate the AUV's egomotion and the changes in orientation, based on image frames from different time frames captured from a single high-definition web camera attached to the bottom of the AUV. A visual odometry application is integrated with other sensors. An internal measurement unit (IMU) sensor is used to determine a correct set of answers corresponding to a homography motion equation. A pressure sensor is used to resolve image scale ambiguity. Uncertainty estimation is computed to correct drift that occurs in the system by using a Jacobian method, singular value decomposition, and backward and forward error propagation.

In-decorated NiO Nanoigloos Gas Sensor with Morphological Evolution for Ethanol Sensors

  • Yi, Seung Yeop;Song, Young Geun;Kim, Gwang Su;Kang, Chong-Yun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.231-235
    • /
    • 2019
  • We investigated the facile and effective strategy for sensitive and selective $C_2H_5OH$ sensors based on the In-decorated NiO nanoigloos. The In-decorated NiO nanoigloos is fabricated by RF sputtering using 750 nm-diameter polystyrene beads using a soft-template. The morphological evolution based on the Van der Drift model was generated through a heterojunction between In metal and NiO, resulting in a pyramidal rough surface. Upon decorating the In on the NiO surface, high sensitivity and selectivity to $C_2H_5OH$ were observed, and gas sensing mechanism was demonstrated by a high surface-to-volume and double Schottky barrier. We are confident that the method presented in this study will have a significant impact on the fabrication of effective nanostructures and their application for the gas sensors.