Proceedings of the Korean Information Science Society Conference
/
2005.07a
/
pp.28-30
/
2005
센서들은 제한된 자원으로 구동되므로 오류가 나기 쉽다. 특히 구조적 라우팅의 경우 클러스터 헤드의 오류시 많은 수의 센서가 네트워크에서 분리되어 네트워크 성능에 악영향을 미친다. 따라서 오류 처리에 관한 연구들이 이루어져 왔으나 기존의 연구들은 망을 최적으로 유지하기 위해 재구성시 전체 네트워크를 재구성 하며 고정된 주기를 사용하여 전체적인 망이 최적의 상태임에도 불구하고 재구성 되거나, 클러스터에 오류가 생겨도 재구성되기까지 기다려야 한다는 단점이 있었다. 따라서 본 논문에서는 지역적인 재클러스터링을 통하여 네트워크를 최적으로 유지하며 클러스터들의 부하를 고려하여 망을 동적으로 재구성 하는 방법을 제안하였다. NS-2를 이용한 시뮬레이션을 통하여 기존의 방법에 비하여 본 논문에서 제안한 알고리즘이 네트워크 유지시간을 연장시켜 더 많은 양의 데이터가 수집됨을 확인 할 수 있었다.
에너지 효율성이 중요한 무선 센서 네트워크에서 클러스터링 기술은 클러스터 헤드 노드가 클러스터 멤버 노드의 데이터를 병합하여 싱크노드로 전송함으로써 센서노드들과 싱크노드 사이의 통신 횟수를 줄여 에너지 효율을 얻는다. 이와 관련된 연구로 LEACH(Low Energy Adaptive Clustering Hierarchy) 프로토콜은 센서 네트워크의 데이터 처리 및 전송 부하를 센서 노드 전체에 분산 시켜 무선 센서 네트워크의 수명을 연장 하였다. 본 논문에서는 분산형 클러스터링 라우팅 기법 중 가장 대표적인 LEACH의 클러스터 헤드 결정 방법에 대한 고찰과 이를 토대로 새로운 확률적 클러스터 헤드 결정 방법의 도출을 이루어 내고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2014.04a
/
pp.166-169
/
2014
무선 센서 네트워크는 제한된 에너지를 가진 센서 노드들로 구성되며, 센서 노드의 에너지를 효율적으로 활용하기 위해 클러스터링 알고리즘을 사용한다. 균형 있는 클러스터 구성을 위해서는 클러스터 헤드의 선정이 중요하다. 기존의 연구는 확률, 노드의 잔여 에너지, 이웃 노드의 수, 이웃 노드와의 거리 등의 정보를 활용하여 클러스터 헤드를 선정하였다. 그러나 확률은 클러스터 헤드의 밀집으로 인한 에너지 소비의 불균형이 있을 수 있으며, 이웃 노드와의 정보 비교는 필요한 정보 수집을 위해 많은 에너지가 필요하다. 이러한 문제점을 개선하기 위해 본 논문은 센서 노드를 베이스 스테이션과의 거리에 따라 2-레벨로 나누고 각 상위 레벨에 속한 동일한 하위 레벨을 순차적으로 변경해가며 클러스터를 구성하는 기법을 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.379-382
/
2015
무선 센서 네트워크는 제한된 에너지 자원으로 동작하므로 에너지 소비를 최소화하여 통신하는 기법이 무선 센서 네트워크 설계에 있어 매우 중요한 요소이다. 센서 노드들의 에너지 효율을 개선하기 위한 다양한 방법 중 클러스터링 알고리즘에 기반 한 계층적 라우팅 방법이 무선 센서 네트워크의 성능과 수명을 증가시키기 위해 효과적인 기술임이 알려지면서 다양한 접근법이 제시되고 있다. 클러스터 기반 아키텍처에서 클러스터의 부하 균형을 위한 효율적인 군집 모델은 게이트웨이와 센서 노드의 수명을 증가시켜 전체 네트워크의 성능을 향상 시킨다. 본 논문에서는 네트워크의 수명과 에너지 효율성을 높이기 위해 새로운 부하 균형 군집 모델을 제시한다. 또한 최적해를 보장하는 분기 한정 알고리즘을 설계하고 이를 이용해 다양한 조건에서 기존에 제시된 부하 균형 군집 모델과 실험하고 성능을 비교한다.
Proceedings of the Korea Information Processing Society Conference
/
2012.11a
/
pp.101-103
/
2012
센서 네트워크 클러스터링 기법은 네트워크의 수명연장에 효율적인 방법이다. 이에 많은 연구에서 효율적인 클러스터링 기법을 제안해 왔으며 지금도 진행 중에 있다. 그러나 기존에 제시된 연구 결과는 센서 노드가 수집하는 데이터가 단일 데이터가 아닌 다중 데이터일 경우, 즉 센서 노드에 여러 개의 센서가 장착되어 있을 경우 데이터 수집 및 전송에 있어 단일 데이터에 비해 비효율적으로 동작 할 수 있다. 이에 본 논문은 다중 센서로부터 수집되는 데이터의 효율적인 전송을 지원하는 클러스터링 기법 개발을 위해 고려해야 할 사항에 대해 연구하였다. 연구 결과, 우리는 센서가 수집하는 데이터의 관심도, 데이터 변화량, 데이터의 내부적인 처리방법, 센서 노드의 배치 밀도 및 데이터 수집 장치의 감지범위가 다중 데이터 센서 네트워크의 클러스터링 기법 설계에 고려되어야 함을 보였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2009.10a
/
pp.534-537
/
2009
Clustering protocol of Wireless sensor networks(WSNs) can not only reduce the volume of inter-node communication by the nodes's data aggregation but also extend the nodes's sleep times by cluster head's TDMA-schedule coordination. In order to extend the network lifetime of WSNs, we propose CHS algorithm to select cluster-head using three variables. It consists of initial and current energy of nodes, round information, and total numbers which have been selected as cluster head until current round.
Proceedings of the Korea Information Processing Society Conference
/
2013.05a
/
pp.517-520
/
2013
센서 네트워크는 수많은 센서 노드들로 구성되는 네트워크이다. 각 센서 노드는 배치된 환경에서 정보를 수집하여 전송하는 동작을 한다. 하지만 정보 전송 시에 공격자에게 노출되어 정보가 공격당할 우려가 있기 때문에 안전한 통신을 위해서 키 관리 기법이 필요하다. 그러나 센서 노드의 특징인 제한적인 자원을 가지고 있다는 점 때문에 공개키 알고리즘을 적용하기 어렵고 또한 다른 키 관리 기법에도 제약 조건이 따른다. 이러한 센서 네트워크의 특징을 고려하여 기존에 연구된 키 관리 기법들을 보완할 효율적이고 안전한 키 관리 기법을 제안하고자 한다.
Recently, self-driving research has been actively studied in various institutions. Accurate recognition is important because information about surrounding objects is needed for safe autonomous driving. This study mainly deals with the signal processing of LiDAR among sensors for object recognition. LiDAR is a sensor that is widely used for high recognition accuracy. First, we clustered and tracked objects by predicting relative position and speed of objects. The characteristic points of all objects were extracted using point cloud data of each objects through proposed algorithm. The Classification between vehicle and pedestrians is estimated using number of characteristic points and distances among characteristic points. The algorithm for classifying cars and pedestrians was implemented and verified using test vehicle equipped with LiDAR sensors. The accuracy of proposed object classification algorithm was about 97%. The classification accuracy was improved by about 13.5% compared with deep learning based algorithm.
Proceedings of the Korea Information Processing Society Conference
/
2008.05a
/
pp.881-884
/
2008
수중 음향 센서 네트워크는 무선 센서 네트워크의 한 분야로서 활발하게 연구되고 있다. 하지만 무선 센서 네트워크에서의 지상이라는 환경은 수중 음향 센서 네트워크에서의 수중이라는 환경과 많은 차이가 있다. 예를 들어 수중에서는 지상에서 보다 더 많은 통신 에너지를 필요로 하며 현재 단일채널 밖에 사용할 수 없다. 그러므로 수중 음향 센서 네트워크에서 무선 센서 네트워크의 메커니즘을 그대로 사용하기에는 적합하지 않다. 본 논문에서는 수중 음향 센서 네트워크에서의 에너지 효율적 클러스터링 메커니즘을 제안한다. 제안하는 클러스터링 메커니즘은 단일채널의 수중환경을 대상으로 클러스터 내 통신에서 발생하는 충돌문제를 최소화하여 에너지 효율을 증가시키기 위해 하향식방법을 이용하여 클러스터 헤드 노드를 선정하고 선정된 클러스터 헤드 노드를 중심으로 클러스터 범위를 결정하는 방법을 제시한다.
Sequential discovery from time series data has mainly concerned about events or item sets. Recently, the research has stated to applied to the numerical data. An example is sensor information generated by checking a machine state. The numerical data hardly have the same valuers while making patterns. So, it is important to extract suitable number of pattern features, which can be transformed to events or item sets and be applied to sequential pattern mining tasks. The popular methods to extract the patterns are sliding window and clustering. The results of these methods are sensitive to window sine or clustering parameters; that makes users to apply data mining task repeatedly and to interpret the results. This paper suggests the method to retrieve pattern features making numerical data into vector of an angle and a magnitude. The retrieved pattern features using this method make the result easy to understand and sequential patterns finding fast. We define an inclusion relation among pattern features using angles and magnitudes of vectors. Using this relation, we can fad sequential patterns faster than other methods, which use all data by reducing the data size.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.