• Title/Summary/Keyword: Sensor Validation

Search Result 240, Processing Time 0.03 seconds

Application of Approximate FFT Method for Target Detection in Distributed Sensor Network (분산센서망 수중표적 탐지를 위한 근사 FFT 기법의 적용 연구)

  • Choi, Byung-Woong;Ryu, Chang-Soo;Kwon, Bum-Soo;Hong, Sun-Mog;Lee, Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.149-153
    • /
    • 2008
  • General underwater target detection methods adopt short-time FFT for estimate target doppler. This paper proposes the efficient target detection method, instead of conventional FFT, using approximate FFT for distributed sensor network target detection, which requires lighter computations. In the proposed method, we decrease computational rate of FFT by the quantization of received signal. For validation of the proposed method, experiment result which is applied to FFT based active sonar detector and real oceanic data is presented.

Validation of an Anthracnose Forecaster to Schedule Fungicide Spraying for Pepper

  • Ahn, Mun-Il;Kang, Wee-Soo;Park, Eun-Woo;Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.46-51
    • /
    • 2008
  • With the goal of achieving better integrated pest management for hot pepper, a disease-forecasting system was compared to a conventional disease-control method. Experimental field plots were established at Asan, Chungnam, in 2005 to 2006, and hourly temperature and leaf wetness were measured and used as model inputs. One treatment group received applications of a protective fungicide, dithianon, every 7 days, whereas another received a curative fungicide, dimethomorph, when the model-determined infection risk (IR) exceeded a value of 3. In the unsprayed plot, fruits showed 18.9% (2005) and 14.0% (2006) anthracnose infection. Fruits sprayed with dithianon at 7-day intervals had 4.7% (2005) and 15.4% (2006) infection. The receiving model-advised sprays of dimethomorph had 9.4% (2005) and 10.9% (2006) anthracnose infection. Differences in the anthracnose levels between the conventional and model-advised treatments were not statistically significant. The efficacy of 10 (2005) and 8 (2006) applications of calendar-based sprays was same as that of three (2005 and 2006) sprays based on the disease-forecast system. In addition, we found much higher the IRs with the leaf wetness sensor from the field plots comparing without leaf wetness sensor from the weather station at Asan within 10km away. Since the wetness-periods were critical to forecast anthracnose in the model, the measurement of wetness-period in commercial fields must be refined to improve the anthracnose-forecast model.

Human Touching Behavior Recognition based on Neural Network in the Touch Detector using Force Sensors (힘 센서를 이용한 접촉감지부에서 신경망기반 인간의 접촉행동 인식)

  • Ryu, Joung-Woo;Park, Cheon-Shu;Sohn, Joo-Chan
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.10
    • /
    • pp.910-917
    • /
    • 2007
  • Of the possible interactions between human and robot, touch is an important means of providing human beings with emotional relief. However, most previous studies have focused on interactions based on voice and images. In this paper. a method of recognizing human touching behaviors is proposed for developing a robot that can naturally interact with humans through touch. In this method, the recognition process is divided into pre-process and recognition Phases. In the Pre-Process Phase, recognizable characteristics are calculated from the data generated by the touch detector which was fabricated using force sensors. The force sensor used an FSR (force sensing register). The recognition phase classifies human touching behaviors using a multi-layer perceptron which is a neural network model. Experimental data was generated by six men employing three types of human touching behaviors including 'hitting', 'stroking' and 'tickling'. As the experimental result of a recognizer being generated for each user and being evaluated as cross-validation, the average recognition rate was 82.9% while the result of a single recognizer for all users showed a 74.5% average recognition rate.

A Recent Research Summary on Smart Sensors for Structural Health Monitoring (구조물 건전성 모니터링을 위한 스마트 센서 관련 최근 연구동향)

  • Kim, Eun-Jin;Cho, Soo-Jin;Sim, Sung-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.10-21
    • /
    • 2015
  • Structural health monitoring (SHM) is a technique to diagnose an accurate and reliable condition of civil infrastructure by collecting and analyzing responses from distributed sensors. In recent years, aging civil structures have been increasing and they require further developed SHM technology for development of sustainable society. Wireless smart sensor and network technology, which is one of the recently emerging SHM techniques, enables more effective and economic SHM system in comparison to the existing wired systems. Researchers continue on development of the capability and extension of wireless smart sensors, and implement performance validation in various in-laboratory and outdoor full-scale experiments. This paper presents a summary of recent (mostly after 2010) researches on smart sensors, focused on the newly developed hardware, software, and validation examples of the developed smart sensors.

The Cross-validation of Satellite OMI and OMPS Total Ozone with Pandora Measurement (지상 Pandora와 위성 OMI와 OMPS 오존관측 자료의 상호검증 방법에 대한 분석 연구)

  • Baek, Kanghyun;Kim, Jae-Hwan;Kim, Jhoon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.461-474
    • /
    • 2020
  • Korea launched Geostationary Environmental Monitoring Satellite (GEMS), a UV/visible spectrometer that measure pollution gases on 18 February 2020. Because satellite retrieval is an ill-posed inverse solving process, the validation with ground-based measurements or other satellite measurements is essential to obtain reliable products. For this purpose, satellite-based OMI and OMPS total column ozone (TCO), and ground-based Pandora TCO in Busan and Seoul were selected for future GEMS validation. First of all, the goal of this study is to validate the ground ozone data using characteristics that satellite data provide coherent ozone measurements on a global basis, although satellite data have a larger error than the ground-based measurements. In the cross validation between Pandora and OMI TCO, we have found abnormal deviation in ozone time series from Pandora #29 observed in Seoul. This shows that it is possible to perform inverse validation of ground data using satellite data. Then OMPS TCO was compared with verified Pandora TCO. Both data shows a correlation coefficient of 0.97, an RMSE of less than 2 DU and the OMPS-Pandora relative mean difference of >4%. The result also shows the OMPS-Pandora relative mean difference with SZA, TCO, cross-track position and season have insignificant dependence on those variables.In addition, we showed that appropriate thresholds depending on the spatial resolution of each satellite sensor are required to eliminate the impact of the cloud on Pandora TCO.

Design of Calibration and Validation Area for Forestry Vegetation Index from CAS500-4 (농림위성 산림분야 식생지수 검보정 사이트 설계)

  • Lim, Joongbin;Cha, Sungeun;Won, Myoungsoo;Kim, Joon;Park, Juhan;Ryu, Youngryel;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.311-326
    • /
    • 2022
  • The Compact Advanced Satellite 500-4 (CAS500-4) is under development to efficiently manage and monitor forests in Korea and is scheduled to launch in 2025. The National Institute of Forest Science is developing 36 types of forestry applications to utilize the CAS500-4 efficiently. The products derived using the remote sensing method require validation with ground reference data, and the quality monitoring results for the products must be continuously reported. Due to it being the first time developing the national forestry satellite, there is no official calibration and validation site for forestry products in Korea. Accordingly, the author designed a calibration and validation site for the forestry products following international standards. In addition, to install calibration and validation sites nationwide, the authors selected appropriate sensors and evaluated the applicability of the sensors. As a result, the difference between the ground observation data and the Sentinel-2 image was observed to be within ±5%, confirming that the sensor could be used for nationwide expansion.

Aeroelastic-aerodynamic analysis and bio-inspired flow sensor design for boundary layer velocity profiles of wind turbine blades with active external flaps

  • Sun, Xiao;Tao, Junliang;Li, Jiale;Dai, Qingli;Yu, Xiong
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.311-328
    • /
    • 2017
  • The characteristics of boundary layers have significant effects on the aerodynamic forces and vibration of the wind turbine blade. The incorporation of active trailing edge flaps (ATEF) into wind turbine blades has been proven as an effective control approach for alleviation of load and vibration. This paper is aimed at investigating the effects of external trailing edge flaps on the flow pattern and velocity distribution within a boundary layer of a NREL 5MW reference wind turbine, as well as designing a new type of velocity sensors for future validation measurements. An aeroelastic-aerodynamic simulation with FAST-AeroDyn code was conducted on the entire wind turbine structure and the modifications were made on turbine blade sections with ATEF. The results of aeroelastic-aerodynamic simulations were combined with the results of two-dimensional computational fluid dynamic simulations. From these, the velocity profile of the boundary layer as well as the thickness variation with time under the influence of a simplified load case was calculated for four different blade-flap combinations (without flap, with $-5^{\circ}$, $0^{\circ}$, and $+5^{\circ}$ flap). In conjunction with the computational modeling of the characteristics of boundary layers, a bio-inspired hair flow sensor was designed for sensing the boundary flow field surrounding the turbine blades, which ultimately aims to provide real time data to design the control scheme of the flap structure. The sensor element design and performance were analyzed using both theoretical model and finite element method. A prototype sensor element with desired bio-mimicry responses was fabricated and validated, which will be further refined for integration with the turbine blade structures.

Derivation the Correction of the Component of the Recorder and the Application of Hilbert Transformation to Calculating the Frequency Response of the Sensor (지진기록계 보정과 힐버트 변환 적용에 의한 센서 주파수 응답 계산)

  • Cho, Chang Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.84-90
    • /
    • 2016
  • The validation of performance test for newly developed or old-used sensor is very important in the earthquake monitoring and seismology using earthquake data. Especially the frequency response of the sensor is mainly used to correct the earthquake data. The technique of the calculation of phase and amplitude with Hilbert transformation for earthquake data that is filtered with band limited frequency in time domain is applied to calculate the frequency response of the sensor. This technique was tested for the acceleration sensors, CMG-5T of 1g and 2g installed on the vibration table at the laboratory and we could obtain satisfactory result. Tohoku large earthquake in 2011 observed at the station SNU that has accelerometer, ES-T and seismometer, STS-2 operated by KIGAM was also used to test the field data applicability. We could successfully get the low frequency response of broad band sensor, STS-2. The technique by using band limited frequency filter and Hilbert transformation showed the superior frequency response to the frequency spectrum ratio method for noisy part in data.

Service-Oriented Wireless Sensor Networks Ontology for Ubiquitous Services (유비쿼터스 서비스를 위한 서비스 지향 센서 네트워크 온톨로지)

  • Kim, Jeong-Hee;Kwon, Hoon;Kim, Do-Hyeun;Kwak, Ho-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.971-978
    • /
    • 2008
  • This paper designs a service-oriented wireless sensor network ontology model which can be used as a knowledge base in future ubiquitous computing. In contrast to legacy approaches, this paper defines the new service classes (ServiceProperty, LocationProperty, and PhysicalProperty), as well as their properties and constraints that enable the service-oriented service based on service items. The service item merging between the proposed model and the legacy ontology was processed using the "equivalentClass" object property of OWL. The Protege 3.3.1 and RACER 1.9.0 inference tools were used for the validation and consistency check of the proposed ontology model, respectively, and the results of service query was applied to the newly defined property in SPARQL language without reference to the properties of legacy ontology.

Calibration and validation of the level 2 data of the Korean OSMI ocean color satellite

  • Suh, Y.S.;Jang, L.H.;Lee, N.K.;Lim, H.S.;Kim, Y.S.;Ahn, Y.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.703-705
    • /
    • 2003
  • A comparison was made between the chlorophyll a and suspended solid (SS) retrievals from OSMI and SeaWiFS sensor to chlorophyll a and SS values determined with the standard method during the NFRDI's research cruises. The percentage of organic and inorganic materials from the SS was calculated to study the contribution of turbid water in the northern part of the East China Sea. The open sea waters in the Kuroshio regions of the East China Sea showed relatively higher concentration of volatile SS. However, towards the northwestern part of the East China Sea, the situation became much more optically different with the non-volatile SS from the Yangtze river and the sea bottom sources in the sea in winter and spring seasons. Furthermore, in order to indirectly detect low salinity water with high turbidity, which related to the Yangtze river using remote sensed data from the satellites, a comparison between the results of the band ratio(nLw 490nm/nLw 555nm) of SeaWiFS (OSMI) and the distribution of low salinity around the Jeju Island was presented.

  • PDF