• Title/Summary/Keyword: Sensor Routing Protocol

Search Result 480, Processing Time 0.025 seconds

Design of a multipath routing protocol for energy-efficiency and low-delay in duty-cycled wireless sensor networks (듀티사이클 무선센서네트워크에서 저전력과 저지연을 위한 다중경로 라우팅 프로토콜의 설계)

  • Lee, Hyungkeun
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.326-332
    • /
    • 2020
  • This paper presents the design of a routing metric for energy-efficient and low-delay path selection and a new routing protocol utilizing the metric in duty-cycyled wireless sensor networks. The new routing metric based on duty cycle, EDW, can reduce the energy and delay of transmission paths, which represents total waiting time from source to destination due to duty cycle. Therefore, in this paper, we propose a new multipath routing protocol based on cross-layer information utilizing the new routing metric, and simulation results show that the proposed protocol shows better performance of end-to-end delay and energy consumption.

Enhanced Multi-Hop Routing Protocol using RSS in Sensor Network (센서 네트워크에서의 RSS(Received Signal Strength)를 이용한 향상된 멀티-홉 라우팅 프로토콜)

  • Lee, Min-Goo;Kang, Jung-Hoon;Yoo, Jun-Jae;Yoon, Myung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.206-208
    • /
    • 2005
  • Wireless sensor network's value has increased greatly in recent years in the fields of Ubiquitous Computing that function as solution to reduce both the limitation and collision about RFID Technology. The research for wireless sensor network technology is proceeding with the research for various sensor nodes, powerful routing algorithms, securities for data transmission, and valid applications. This paper suggests that we make the new multi-hop routing algorithm using RSS in order to implement enhanced multi-hop routing algorithm. This paper should demonstrate that the routing algorithm using suggested RSS is superior to routing algorithm based on established BSDV(Destination Sequenced Distance Vector).

  • PDF

Link Cost based Routing Protocol for Improving Energy Efficiency in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율 향상을 위한 링크 비용 기반 라우팅 프로토콜)

  • Lee, Dae-hee;Cho, Kyoung-woo;Kang, Chul-gyu;Oh, Chang-heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.574-580
    • /
    • 2019
  • Conventional energy efficient routing protocols apply high weight to energy among routing metrics, causing nodes to concentrate on energy efficient paths and quickly exhaust energy on those paths. The unbalanced energy consumption of these wireless sensor networks causes network division and malfunction, and reduces network lifetime. Therefore, in this paper, it proposes a link cost based routing protocol to solve the unbalanced energy consumption of wireless sensor networks. The proposed routing protocol calculates the link cost by applying the weight of the routing metric differently according to the network problem situation and selects the path with the lowest value. As a result of the performance analysis, it confirmed that the proposed routing protocol has 22% longer network life, 2% energy consumption standard deviation and 2% higher data reception rate than the existing AODV protocol.

An Entropy-Based Routing Protocol for Supporting Stable Route Life-Time in Mobile Ad-hoc Wireless Sensor Networks (모바일 Ad-hoc 무선 센서 네트워크에서 안정된 경로의 Life-Time을 지원하기 위한 엔트로피 기반의 라우팅 프로토콜)

  • An, Beong Ku;Lee, Joo Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.31-37
    • /
    • 2008
  • In this paper, we propose an entropy-based routing protocol to effectively support both stable route construction and route lifetime in Mobile Ad-hoc Wireless Sensor Networks (MAWSN). The basic idea and feature of the proposed routing protocol are as follows. First, we construct the stable routing routes based on entropy concept using mobility of mobile nodes. Second, we consider a realistic approach, in the points of view of the MAWSN, based on mobile sensor nodes as well as fixed sensor nodes in sensor fields while the conventional research for sensor networks focus on mainly fixed sensor nodes. The performance evaluation of the proposed routing protocol is performed via simulation using OPNET(Optimized Network Engineering Tool) and analysis. The results of the performance evaluation show that the proposed routing protocol can efficiently support both the construction of stable route and route lifetime in mobile ad-hoc wireless networks.

  • PDF

The Routing Algorithm for Wireless Sensor Networks with Random Mobile Nodes

  • Yun, Dai Yeol;Jung, Kye-Dong;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.38-43
    • /
    • 2017
  • Sensor Networks (WSNs) can be defined as a self-configured and infrastructure-less wireless networks to monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants and to cooperatively pass their data through the network to a main location or base-station where the data can be observed and analyzed. Typically a wireless sensor network contains hundreds of thousands of sensor nodes. The sensor nodes can communicate among themselves using radio signals. A wireless sensor node is equipped with sensing and computing devices, radio transceivers and power components. The individual nodes in a wireless sensor network (WSN) are inherently resource constrained: they have limited processing speed, storage capacity, communication bandwidth and limited-battery power. At present time, most of the research on WSNs has concentrated on the design of energy- and computationally efficient algorithms and protocols In order to extend the network life-time, in this paper we are looking into a routing protocol, especially LEACH and LEACH-related protocol. LEACH protocol is a representative routing protocol and improves overall network energy efficiency by allowing all nodes to be selected to the cluster head evenly once in a periodic manner. In LEACH, in case of movement of sensor nodes, there is a problem that the data transmission success rate decreases. In order to overcome LEACH's nodes movements, LEACH-Mobile protocol had proposed. But energy consumption increased because it consumes more energy to recognize which nodes moves and re-transfer data. In this paper we propose the new routing protocol considering nodes' mobility. In order to simulate the proposed protocol, we make a scenario, nodes' movements randomly and compared with the LEACH-Mobile protocol.

Interactive Multipath Routing Protocol for Improving the Routing Performance in Wireless Sensor Networks

  • Jung, Kwansoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.79-90
    • /
    • 2015
  • Multipath routing technique is recognized as one of the effective approaches to improve the reliability of data forwarding. However, the traditional multipath routing focuses only on how many paths are needed to ensure a desired reliability. For this purpose, the protocols construct additional paths and thus cause significant energy consumption. These problems have motivated the study for the energy-efficient and reliable data forwarding. Thus, this paper proposes an energy-efficient concurrent multipath routing protocol with a small number of paths based on interaction between paths. The interaction between paths helps to reinforce the multipath reliability by making efficient use of resources. The protocol selects several nodes located in the radio overlapped area between a pair of paths as bridge nodes for the path-interaction. In order to operate the bridge node efficiently, when the transmission failure has detected by overhearing at each path, it performs recovery transmission to recover the path failure. Simulation results show that proposed protocol is superior to the existing multipath protocols in terms of energy consumption and delivery reliability.

Enhanced OLSR Routing Protocol Using Link-Break Prediction Mechanism for WSN

  • Jaggi, Sukhleen;Wasson, Er. Vikas
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.3
    • /
    • pp.259-267
    • /
    • 2016
  • In Wireless Sensor Network, various routing protocols were employed by our Research and Development community to improve the energy efficiency of a network as well as to control the traffic by considering the terms, i.e. Packet delivery rate, the average end-to-end delay, network routing load, average throughput, and total energy consumption. While maintaining network connectivity for a long-term duration, it's necessary that routing protocol must perform in an efficient way. As we discussed Optimized Link State Routing protocol between all of them, we find out that this protocol performs well in the large and dense networks, but with the decrease in network size then scalability of the network decreases. Whenever a link breakage is encountered, OLSR is not able to periodically update its routing table which may create a redundancy problem. To resolve this issue in the OLSR problem of redundancy and predict link breakage, an enhanced protocol, i.e. S-OLSR (More Scalable OLSR) protocol has been proposed. At the end, a comparison among different existing protocols, i.e. DSR, AODV, OLSR with the proposed protocol, i.e. S-OLSR is drawn by using the NS-2 simulator.

Cluster Routing for Service Lifetime of Wireless Multimedia Sensor Networks (무선 멀티미디어 센서 네트워크의 서비스 수명을 위한 클러스터 라우팅)

  • Lee, Chongdeuk
    • Journal of Digital Convergence
    • /
    • v.11 no.5
    • /
    • pp.279-284
    • /
    • 2013
  • This paper proposes a new cluster-based routing protocol for assuring the service lifetime of wireless multimedia sensor networks. The proposed protocol performs the intra-cluster routing and inter-cluster routing to reduce the energy consumption and service lifetime in the wireless sensor multimedia computing environment, and the proposed mechanism enhances the routing reliability, and it minimizes the packet loss, overhead, and energy consumption. The simulation results show that the proposed mechanism outperforms DSR and AODV.

Multi-path Routing Protocol with Optimum Routes Finding Scheme in Wireless Sensor Networks

  • Keuma, Tae-Hoon;Bu, Ki-Dong;Kim, Hyun-Sung;Lee, Sung-Woon
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2008.10b
    • /
    • pp.449-454
    • /
    • 2008
  • Finding an energy efficient route is one of the very important issues in the wireless sensor networks. The route scheme should consider both of the energy level of sensor nodes and the number of hops at the same time. First of all, this paper proposes an optimum routes finding scheme (ORFS), which could be used in the sensor network routing protocols. The scheme uses an optimum value for the path with the considerations of both the minimum energy level of a path and the number of hops at the same time. After that, this paper proposes a routing protocol based on the ORFS for how it could be used for the multipath directed diffusion with data aggregation (MDD-A), to get the better energy efficiency. The analysis result shows that the proposed routing protocol could lengthen the network life cycle about 18.7% compared to the previous MDD-A related protocols.

  • PDF

A Grid-based Efficient Routing Protocol for a Mobile Sink in Wireless Sensor Networks

  • Lee, Taekkyeun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.2
    • /
    • pp.35-43
    • /
    • 2018
  • In this paper, we propose a grid-based efficient routing protocol for a mobile sink in wireless sensor networks. In the proposed protocol, the network is partitioned into grids and each grid has a grid head. For the efficient routing to a mobile sink, the proposed protocol uses a mobile sink representative node to send the data to a mobile sink and grid heads are used as a mobile sink representative node. Furthermore, the proposed protocol uses nodes in the boundary of the center grid as position storage nodes. The position storage nodes store the position of a mobile sink representative node and provide source nodes with it for data delivery. With these features, the proposed protocol can reduce a lot of overhead to update the position information and improve the delay of data delivery to a mobile sink. The proposed protocol performs better than other protocols in terms of the delay and the energy consumption per node in the performance evaluation.