• Title/Summary/Keyword: Sensor Reasoning

검색결과 46건 처리시간 0.024초

현장진단 전문가 시스템의 개발 : 휴리스틱과 인플루언스 다이아그램 (Development of On-Line Diagnostic Expert System : Heuristics and Influence Diagrams)

  • 김영진
    • 대한산업공학회지
    • /
    • 제23권1호
    • /
    • pp.95-113
    • /
    • 1997
  • This paper outlines a framework for a diagnosis of a complex system with uncertain information. Sensor validation ploys a vital role in the ability of the overall system to correctly determine the state of a system monitored by imperfect sensors. Here, emphases are put on the heuristic technology and post-processor for reasoning. Heuristic Sensor Validation (HSV) exploits deeper knowledge about parameter interaction within the plant to cull sensor faults from the data stream. Finally the modified probability distributions and validated data are used as input to the reasoning scheme which is the runtime version of the influence diagram. The output of the influence diagram is a diagnostic mapping from the symptoms or sensor readings to a determination of likely failure modes. Once likely failure modes are identified, a detailed diagnostic knowledge base suggests corrective actions to improve performance. This framework for a diagnostic expert system with sensor validation and reasoning under uncertainty applies in $HEATXPRT^{TM}$ a data-driven on-line expert system for diagnosing heat rate degradation problems in fossil power plants [1].

  • PDF

THE PROPOSAL OF GAS IDENTIFICATION METHOD BY FUZZY REASONING

  • Konishi, R.;Aoki, T.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1285-1288
    • /
    • 1993
  • We tried gas identification by using one semiconductive gas sensor. As a method of gas identification, we used the fuzzy reasoning with fuzzy set of slope of gas pattern which is divided into arbitary interval. As a result, we got a good successful rate for hydrogen 66.6%, propane 79.1%, butane 100%, methane 100%, city gas 79.1% and alcohol 91.6%, respectively.

  • PDF

CBM+ 적용을 위한 설계초기단계 센서선정 추론 연구 (A Study of Sensor Reasoning for the CBM+ Application in the Early Design Stage)

  • 신백천;허장욱
    • 시스템엔지니어링학술지
    • /
    • 제18권1호
    • /
    • pp.84-89
    • /
    • 2022
  • For system maintenance optimization, it is necessary to establish a state information system by CBM+ including CBM and RCM, and sensor selection for CBM+ application requires system process for function model analysis at the early design stage. The study investigated the contents of CBM and CBM+, analyzed the function analysis tasks and procedures of the system, and thus presented a D-FMEA based sensor selection inference methodology at the early stage of design for CBM+ application, and established it as a D-FMEA based sensor selection inference process. The D-FMEA-based sensor inference methodology and procedure in the early design stage were presented for diesel engine sub assembly.

대용량 스트리밍 센서데이터 환경에서 RDFS 규칙기반 병렬추론 기법 (RDFS Rule based Parallel Reasoning Scheme for Large-Scale Streaming Sensor Data)

  • 권순현;박영택
    • 정보과학회 논문지
    • /
    • 제41권9호
    • /
    • pp.686-698
    • /
    • 2014
  • 최근 스마트폰의 폭발적인 보급, IoT와 클라우드 컴퓨팅 기술의 고도화, 그리고 IoT 디바이스의 보편화로 대용량 스트리밍 센싱데이터가 출현하였다. 또한 이를 기반으로 데이터의 공유와 매쉬업 통해 새로운 데이터의 가치를 창출하기 위한 요구사항의 증대로 대용량 스트리밍 센싱데이터 환경에서 시맨틱웹 기술과의 접목에 관한 연구가 활발히 진행되고 있다. 하지만 데이터의 대용량성 스트리밍성으로 인해 새로운 지식을 도출하기 위한 지식 추론분야에서 많은 이슈들에 직면하고 있다. 이러한 배경하에, 본 논문에서는 IoT 환경에서 발생하는 대용량 스트리밍 센싱데이터를 시맨틱웹 기술로 처리하여 서비스하기 위해 RDFS 규칙기반 병렬추론 기법을 제시한다. 제안된 기법에서는 기존의 규칙추론 알고리즘인 Rete 알고리즘을 하둡프레임워크 맵리듀스를 통해 병렬로 수행하고, 공용 스토리지로서 하둡 데이터베이스인 HBase를 사용하여 데이터를 공유한다. 이를 위한 시스템을 구현하고, 대용량 스트리밍 센싱데이터인 기상청 AWS 관측데이터를 이용하여 제시된 기법에 대한 성능평가를 진행하고, 이를 입증한다.

인플루언스 다이아그램을 기초로 한 이상진단 지식베이스의 개발 (Development of Influence Diagram Based Knowledge Base in Probabilistic Reasoning)

  • 김영진
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3124-3134
    • /
    • 1993
  • Diagnosis is composed of two different but interrelated steps ; retrieving the sensory responses f the system and reasoning the state of the system through the given sensor data. This paper explains the probabilistic nature of reasoning involved in the diagnosis when the uncertainties are inevitably included in experts' diagnostic decision making. Uncertainties in decision making are experts' personal experiences, preferences, and system's coherent characteristics. In order to ensure a consistent decision based on the same responses from the system, expert system technology is adopted with the Bayesian reasoning scheme.

스마트의류에서 멀티센서 기반의 상황인지에 관한 연구 (A Study for Context-Awareness based on Multi-Sensor in the Smart-Clothing)

  • 박현문;전병찬;류대현
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권3호
    • /
    • pp.71-78
    • /
    • 2013
  • 본 논문은 스마트의류에 멀티센서를 장착하고 이를 통해 수집된 데이터를 기반으로 사용자 상황 및 행동을 추론하는 기법을 제안하고 이를 스마트폰 앱으로 구현하였다. 단일 센서로 사용자 상황 및 행동 추론은 매우 어려우며, 외 내부 환경, 온도, 진동 등에 따라 센서의 측정값이 달라지는 잡음환경에서, 잡음을 줄이면서도 사용자 행동을 판단할 수 있는 디지털 필터와 추론 알고리즘이 요구된다. 본 논문에서 EWMA과 칼만필터를 적용하고, 행동인지를 위한 3축 값을 하나의 대표 값으로 처리하는 SVM을 사용하였다.

상황 정보 기반 양방향 추론 방법을 이용한 이동 로봇의 물체 인식 (Object Recognition for Mobile Robot using Context-based Bi-directional Reasoning)

  • 임기현;류광근;서일홍;김종복;장국현;강정호;박명관
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.6-8
    • /
    • 2007
  • In this paper, We propose reasoning system for object recognition and space classification using not only visual features but also contextual information. It is necessary to perceive object and classify space in real environments for mobile robot. especially vision based. Several visual features such as texture, SIFT. color are used for object recognition. Because of sensor uncertainty and object occlusion. there are many difficulties in vision-based perception. To show the validities of our reasoning system. experimental results will be illustrated. where object and space are inferred by bi -directional rules even with partial and uncertain information. And the system is combined with top-down and bottom-up approach.

  • PDF

Fusion of Sonar and Laser Sensor for Mobile Robot Environment Recognition

  • Kim, Kyung-Hoon;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.91.3-91
    • /
    • 2001
  • A sensor fusion scheme for mobile robot environment recognition that incorporates range data and contour data is proposed. Ultrasonic sensor provides coarse spatial description but guarantees open space with no obstacle within sonic cone with relatively high belief. Laser structured light system provides detailed contour description of environment but prone to light noise and is easily affected by surface reflectivity. Overall fusion process is composed of two stages: Noise elimination and belief updates. Dempster Shafer´s evidential reasoning is applied at each stage. Open space estimation from sonar range measurements brings elimination of noisy lines from laser sensor. Comparing actual sonar data to the simulated sonar data enables ...

  • PDF

지능형 서비스 로봇을 위한 온톨로지 기반의 동적 상황 관리 및 시-공간 추론 (Ontology-Based Dynamic Context Management and Spatio-Temporal Reasoning for Intelligent Service Robots)

  • 김종훈;이석준;김동하;김인철
    • 정보과학회 논문지
    • /
    • 제43권12호
    • /
    • pp.1365-1375
    • /
    • 2016
  • 일상생활 환경 속에서 자율적으로 동작하는 서비스 로봇에게 가장 필수적인 능력 중 하나가 동적으로 변화하는 주변 환경에 대한 올바른 상황 인식과 이해 능력이다. 다양한 센서 데이터 스트림들로 부터 신속히 의사 결정에 필요한 고수준의 상황 지식을 생성해내기 위해서는, 멀티 모달 센서 데이터의 융합, 불확실성 처리, 기호 지식의 실체화, 시간 의존성과 가변성 처리, 실시간성을 만족할 수 있는 시-공간 추론 등 많은 문제들이 해결되어야 한다. 이와 같은 문제들을 고려하여, 본 논문에서는 지능형 서비스 로봇을 위한 효과적인 동적 상황 관리 및 시-공간 추론 방법을 제시한다. 본 논문에서는 상황 지식 관리와 추론의 효율성을 극대화하기 위해, 저수준의 상황 지식은 센서 및 인식 데이터가 입력될 때마다 실시간적으로 생성되지만, 반면에 고수준의 상황 지식은 의사 결정 모듈에서 요구가 있을 때만 후향 시-공간 추론을 통해 유도되도록 알고리즘을 설계하였다. Kinect 시각 센서 기반의 Turtlebot를 이용한 실험을 통해, 제안한 방법에 기초한 동적 상황 관리 및 추론 시스템의 높은 효율성을 확인할 수 있었다.

Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses

  • Xu, Xiang;Huang, Qiao;Ren, Yuan;Zhao, Dan-Yang;Yang, Juan
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.279-293
    • /
    • 2019
  • To ensure high quality data being used for data mining or feature extraction in the bridge structural health monitoring (SHM) system, a practical sensor fault diagnosis methodology has been developed based on the similarity of symmetric structure responses. First, the similarity of symmetric response is discussed using field monitoring data from different sensor types. All the sensors are initially paired and sensor faults are then detected pair by pair to achieve the multi-fault diagnosis of sensor systems. To resolve the coupling response issue between structural damage and sensor fault, the similarity for the target zone (where the studied sensor pair is located) is assessed to determine whether the localized structural damage or sensor fault results in the dissimilarity of the studied sensor pair. If the suspected sensor pair is detected with at least one sensor being faulty, field test could be implemented to support the regression analysis based on the monitoring and field test data for sensor fault isolation and reconstruction. Finally, a case study is adopted to demonstrate the effectiveness of the proposed methodology. As a result, Dasarathy's information fusion model is adopted for multi-sensor information fusion. Euclidean distance is selected as the index to assess the similarity. In conclusion, the proposed method is practical for actual engineering which ensures the reliability of further analysis based on monitoring data.