• Title/Summary/Keyword: Sensor Precision

Search Result 1,640, Processing Time 0.024 seconds

Rigorous Modeling of the First Generation of the Reconnaissance Satellite Imagery

  • Shin, Sung-Woong;Schenk, Tony
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.3
    • /
    • pp.223-233
    • /
    • 2008
  • In the mid 90's, the U.S. government released images acquired by the first generation of photo reconnaissance satellite missions between 1960 and 1972. The Declassified Intelligent Satellite Photographs (DISP) from the Corona mission are of high quality with an astounding ground resolution of about 2 m. The KH-4A panoramic camera system employed a scan angle of $70^{\circ}$ that produces film strips with a dimension of $55\;mm\;{\times}\;757\;mm$. Since GPS/INS did not exist at the time of data acquisition, the exterior orientation must be established in the traditional way by using control information and the interior orientation of the camera. Detailed information about the camera is not available, however. For reconstructing points in object space from DISP imagery to an accuracy that is comparable to high resolution (a few meters), a precise camera model is essential. This paper is concerned with the derivation of a rigorous mathematical model for the KH-4A/B panoramic camera. The proposed model is compared with generic sensor models, such as affine transformation and rational functions. The paper concludes with experimental results concerning the precision of reconstructed points in object space. The rigorous mathematical panoramic camera model for the KH-4A camera system is based on extended collinearity equations assuming that the satellite trajectory during one scan is smooth and the attitude remains unchanged. As a result, the collinearity equations express the perspective center as a function of the scan time. With the known satellite velocity this will translate into a shift along-track. Therefore, the exterior orientation contains seven parameters to be estimated. The reconstruction of object points can now be performed with the exterior orientation parameters, either by intersecting bundle rays with a known surface or by using the stereoscopic KH-4A arrangement with fore and aft cameras mounted an angle of $30^{\circ}$.

Development of Strain-gauge-type Rotational Tool Dynamometer and Verification of 3-axis Static Load (스트레인게이지 타입 회전형 공구동력계 개발과 3축 정적 하중 검증)

  • Lee, Dong-Seop;Kim, In-Su;Lee, Se-Han;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.72-80
    • /
    • 2019
  • In this task, the tool dynamometer design and manufacture, and the Ansys S/W structural analysis program for tool attachment that satisfies the cutting force measurement requirements of the tool dynamometer system are used to determine the cutting force generated by metal cutting using 3-axis static structural analysis and the LabVIEW system. The cutting power in a cutting process using a milling tool for processing metals provides useful information for understanding the processing, optimization, tool status monitoring, and tool design. Thus, various methods of measuring cutting power have been proposed. The device consists of a strain-gauge-based sensor fitted to a new design force sensing element, which is then placed in a force reduction. The force-sensing element is designed as a symmetrical cross beam with four arms of a rectangular parallel line. Furthermore, data duplication is eliminated by the appropriate setting the strain gauge attachment position and the construction of a suitable Wheatstone full-bridge circuit. This device is intended for use with rotating spindles such as milling tools. Verification and machining tests were performed to determine the static and dynamic characteristics of the tool dynamometer. The verification tests were performed by analyzing the difference between strain data measured by weight and that derived by theoretical calculations. Processing test was performed by attaching a tool dynamometer to the MCT to analyze data generated by the measuring equipment during machining. To maintain high productivity and precision, the system monitors and suppresses process disturbances such as chatter vibration, imbalances, overload, collision, forced vibration due to tool failure, and excessive tool wear; additionally, a tool dynamometer with a high signal-to-noise ratio is provided.

Eddy Covariance Measurement of CH4 Flux in a Rice Paddy in Gimje, Korea (김제 논에서 메탄 플럭스의 에디 공분산 관측)

  • Talucder, Samiul Ahsan;Yun, Juyeol;Kang, Namgoo;Shim, Kyo Moon;Kim, Joon
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2013.11a
    • /
    • pp.28-29
    • /
    • 2013
  • We have been measuring $CH_4$ flux in a rice paddy in Gimje using the eddy covariance method since July 2011. In order to measure the fast fluctuations of $CH_4$ concentration, an innovative LI-7700 open-path laser spectrometer is used. This high-precision, low power, light weight, low maintenance sensor enables us to operate it on a continuous and long-term basis. One particular feature, among other things, is the self-cleaning lower mirror which decreases maintenance requirements while ensuring more robust, continuous, high-quality dataset. Its cleaning is initiated at user-specified time intervals or a signal strength threshold, and its status is recorded as a diagnostic index. We have noticed that the operation of LI-7700 at Gimje site is quite challenging particularly due to its frequent mirror cleaning requirement and the associated sensitivity of the instrument. In this presentation, we present some field observation data regarding the mirror cleaning and their analysis, thereby suggesting the pertinent operation options for high-quality, maximum data retrieval in the field.

  • PDF

Performance Analysis of Vision-based Positioning Assistance Algorithm (비전 기반 측위 보조 알고리즘의 성능 분석)

  • Park, Jong Soo;Lee, Yong;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.101-108
    • /
    • 2019
  • Due to recent improvements in computer processing speed and image processing technology, researches are being actively carried out to combine information from camera with existing GNSS (Global Navigation Satellite System) and dead reckoning. In this study, developed a vision-based positioning assistant algorithm to estimate the distance to the object from stereo images. In addition, GNSS/on-board vehicle sensor/vision based positioning algorithm is developed by combining vision based positioning algorithm with existing positioning algorithm. For the performance analysis, the velocity calculated from the actual driving test was used for the navigation solution correction, simulation tests were performed to analyse the effects of velocity precision. As a result of analysis, it is confirmed that about 4% of position accuracy is improved when vision information is added compared to existing GNSS/on-board based positioning algorithm.

Improved Environment Recognition Algorithms for Autonomous Vehicle Control (자율주행 제어를 위한 향상된 주변환경 인식 알고리즘)

  • Bae, Inhwan;Kim, Yeounghoo;Kim, Taekyung;Oh, Minho;Ju, Hyunsu;Kim, Seulki;Shin, Gwanjun;Yoon, Sunjae;Lee, Chaejin;Lim, Yongseob;Choi, Gyeungho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.35-43
    • /
    • 2019
  • This paper describes the improved environment recognition algorithms using some type of sensors like LiDAR and cameras. Additionally, integrated control algorithm for an autonomous vehicle is included. The integrated algorithm was based on C++ environment and supported the stability of the whole driving control algorithms. As to the improved vision algorithms, lane tracing and traffic sign recognition were mainly operated with three cameras. There are two algorithms developed for lane tracing, Improved Lane Tracing (ILT) and Histogram Extension (HIX). Two independent algorithms were combined into one algorithm - Enhanced Lane Tracing with Histogram Extension (ELIX). As for the enhanced traffic sign recognition algorithm, integrated Mutual Validation Procedure (MVP) by using three algorithms - Cascade, Reinforced DSIFT SVM and YOLO was developed. Comparing to the results for those, it is convincing that the precision of traffic sign recognition is substantially increased. With the LiDAR sensor, static and dynamic obstacle detection and obstacle avoidance algorithms were focused. Therefore, improved environment recognition algorithms, which are higher accuracy and faster processing speed than ones of the previous algorithms, were proposed. Moreover, by optimizing with integrated control algorithm, the memory issue of irregular system shutdown was prevented. Therefore, the maneuvering stability of the autonomous vehicle in severe environment were enhanced.

KOMPSAT Imagery Application Status (다목적실용위성 영상자료 활용 현황)

  • Lee, Kwangjae;Kim, Younsoo;Chae, Taebyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1311-1317
    • /
    • 2018
  • The ultimate goal of satellite development is to use information obtained from satellites. Therefore, national-levelsatellite development program should include not only hardware development, but also infrastructure establishment and application technology development for information utilization. Until now, Korea has developed various satellites and has been very useful in weather and maritime surveillance as well as various disasters. In particular, KOMPSAT (Korea Multi-purpose Satellite) images have been used extensively in agriculture, forestry and marine fields based on high spatial resolution, and has been widely used in research related to precision mapping and change detection. This special issue aims to introduce a variety of recent studies conducted using KOMPSAT optical and SAR (Synthetic Aperture Radar) images and to disseminate related satellite image application technologies to the public sector.

The design of the mobile data processing system for noise measured in a living environment (생활 환경의 소음 측정을 위한 모바일 데이터 처리 시스템의 설계)

  • Choo, Min-ji;Park, Hung-bog;Seo, Jung-hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.993-995
    • /
    • 2014
  • Typical dwelling pattern of apartment houses in Korea. Because of this the noise of life problem arise, complaints are surging. In real-life, if suffering is unavoidable due to ambient noise, to handle a civil complaint the using a noise meter. At home, it is difficult to measure the noise using professional equipment. So, many uses smartphone application in general. But released existing noise measurement application has different value from the sensor sensitivity for each smartphone model to same situation. The value is lacks precision and this is not considered as having been made by measuring the actual noise purpose. Therefore in this paper, we propose a mobile data processing system for the living environment of noise measurement using a smartphone. Benefits of this study is to improve the accuracy of noise measurements and to find direction of noise to handle complaints.

  • PDF

Problem Solving about Practical Engineering Education based on Relationship of Temperature and Humidity in Vehicle (차량 내 온, 습도 관계에 의한 실천공학교육적 문제해결)

  • Kim, Jin-woo;Joo, Kangwo
    • Journal of Practical Engineering Education
    • /
    • v.9 no.2
    • /
    • pp.149-153
    • /
    • 2017
  • Inside the vehicle, temperature and humidity are suddenly changed. Accordingly, HVAC System's temperature control is very complicated. But, clarifying the relationship between temperature and humidity can reduce the control parameters. Therefore, this paper describes the relationship between temperature and humidity in the vehicle and presents a problem solving method in terms of control technologyThe vehicle sensor monitors the factors required for vehicle control and plays a role in enabling optimal control from the obtained information. Of these sensors, the driving environment of the driver is determined by the temperature and humidity inside the vehicle, and the characteristics of the vehicle suddenly change rapidly. Accordingly, HVAC System's temperature control is very complicated. But, clarifying the relationship between temperature and humidity can reduce the control parameters. Therefore, this paper describes the relationship between the temperature and humidity in the vehicle, and presents a method for controlling the temperature and humidity in the vehicle as an example.

Exercise Detection Method by Using Heart Rate and Activity Intensity in Wrist-Worn Device (손목형 웨어러블 디바이스에서 사람의 심박변화와 활동강도를 이용한 운동 검출 방법)

  • Sung, Ji Hoon;Choi, Sun Tak;Lee, Joo Young;Cho, We-Duke
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.4
    • /
    • pp.93-102
    • /
    • 2019
  • As interest in wellness grows, There is a lot of research about monitoring individual health using wearable devices. Accordingly, a variety of methods have been studied to distinguish exercise from daily activities using wearable devices. Most of these existing studies are machine learning methods. However, there are problems with over-fitting on individual person's learning, data discontinuously recognition by independent segmenting and fake activity. This paper suggests a detection method for exercise activity based on the physiological response principle of heart rate up and down during exercise. This proposed method calculates activity intensity and heart rate from triaxial and photoplethysmography sensor to determine a heart rate recovery, then detects exercise by estimating activity intensity or detecting a heart rate rising state. Experimental results show that our proposed algorithm has 98.64% of averaged accuracy, 98.05% of averaged precision and 98.62% of averaged recall.

ILOCAT: an Interactive GUI Toolkit to Acquire 3D Positions for Indoor Location Based Services (ILOCAT: 실내 위치 기반 서비스를 위한 3차원 위치 획득 인터랙티브 GUI Toolkit)

  • Kim, Seokhwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.866-872
    • /
    • 2020
  • Indoor location-based services provide a service based on the distance between an object and a person. Recently, indoor location-based services are often implemented using inexpensive depth sensors such as Kinect. The depth sensor provides a function to measure the position of a person, but the position of an object must be acquired manually using a tool. To acquire a 3D position of an object, it requires 3D interaction, which is difficult to a general user. GUI(Graphical User Interface) is relatively easy to a general user but it is hard to gather a 3D position. This study proposes the Interactive LOcation Context Authoring Toolkit(ILOCAT), which enables a general user to easily acquire a 3D position of an object in real space using GUI. This paper describes the interaction design and implementation of ILOCAT.