• Title/Summary/Keyword: Sensor Precision

Search Result 1,643, Processing Time 0.036 seconds

Study on Robot Calibration Using Multi-measurement Coordinate System (다중 측정 좌표계를 이용한 로봇 캘리브레이션 방법 연구)

  • Lim, Saeng-Ki;Kim, Jung-Tae;Borm, Jin-Hwan;Choi, Jae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.164-173
    • /
    • 1999
  • Robot calibration needs accurate measurements of robot end-effector position at a number of different robot configurations. One of the efficient ways of the measurement is "Touching on Jig" method suggested in [7], which utilizes a touch sensor and a fixture consisting of various sizes of blocks. By moving the end-effector to touch the surface of a block whose position relative to the other is known, the end-effector position relative to the fixture coordinate system can be obtained at the instant of touching. However, the global size of fixture is too small to cover the various configurations of the robot. Because of the manufacturing difficulties, the fixture cannot be manufactured large enough for well distributed position measurement. It results in the improvement of robot accuracy only in the limited space near to the fixture rather than over the whole space of the robot working volume. The paper proposes a method to resolve the above problem by measuring the end-effector positions with respect to several different coordinate system using the same measurement devices. It is found that the proposed method leads the improvements of robot position accuracy over the large space of working volume. The experimental studies are performed to show the validity of the method and their results are discussed.

  • PDF

Defect Detection in Laser Welding Using Multidimensional Discretization and Event-Codification (Multidimensional Discretization과 Event-Codification 기법을 이용한 레이저 용접 불량 검출)

  • Baek, Su Jeong;Oh, Rocku;Kim, Duck Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.989-995
    • /
    • 2015
  • In the literature, various stochastic anomaly detection methods, such as limit checking and PCA-based approaches, have been applied to weld defect detection. However, it is still a challenge to identify meaningful defect patterns from very limited sensor signals of laser welding, characterized by intermittent, discontinuous, very short, and non-stationary random signals. In order to effectively analyze the physical characteristics of laser weld signals: plasma intensity, weld pool temperature, and back reflection, we first transform the raw data of laser weld signals into the form of event logs. This is done by multidimensional discretization and event-codification, after which the event logs are decoded to extract weld defect patterns by $Na{\ddot{i}}ve$ Bayes classifier. The performance of the proposed method is examined in comparison with the commercial solution of PRECITEC's LWM$^{TM}$ and the most recent PCA-based detection method. The results show higher performance of the proposed method in terms of sensitivity (1.00) and specificity (0.98).

Study on Gait Analysis of Elders and Hemiplegia Patients using 3D Motion Analysis (고령자 및 편마비 환자의 3 차원 동작분석을 통한 보행 특성에 관한 연구)

  • Jang, Hye-Youn;Han, Jung-Soo;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.730-736
    • /
    • 2012
  • Latest, many researchers do research on wearable robot. The purpose of the researches is very diverse, it will improve efficiency in the industry, taken to replace the many workers in the military field and taken to assist bodily functions run out by aging. However, there is no clear Differentiated strategy depending on the purpose for design and control of the wearable robot. Although a common purpose is to drive the robot by the sensor signal (intent signals), the optimization about the mechanism and control studies must be done according to the user's physical ability and purpose. In this study, the study's first phase for the development of wearable robotic gait rehabilitation, gait characteristics were analyzed elders and hemiplegia patients using a 3D gait analysis system (VICON512). As a result, asymmetric gait characteristics of the hemiplegia patients were found compared with the normal elderly.

Requirements Analysis of Image-Based Positioning Algorithm for Vehicles

  • Lee, Yong;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.397-402
    • /
    • 2019
  • Recently, with the emergence of autonomous vehicles and the increasing interest in safety, a variety of research has been being actively conducted to precisely estimate the position of a vehicle by fusing sensors. Previously, researches were conducted to determine the location of moving objects using GNSS (Global Navigation Satellite Systems) and/or IMU (Inertial Measurement Unit). However, precise positioning of a moving vehicle has lately been performed by fusing data obtained from various sensors, such as LiDAR (Light Detection and Ranging), on-board vehicle sensors, and cameras. This study is designed to enhance kinematic vehicle positioning performance by using feature-based recognition. Therefore, an analysis of the required precision of the observations obtained from the images has carried out in this study. Velocity and attitude observations, which are assumed to be obtained from images, were generated by simulation. Various magnitudes of errors were added to the generated velocities and attitudes. By applying these observations to the positioning algorithm, the effects of the additional velocity and attitude information on positioning accuracy in GNSS signal blockages were analyzed based on Kalman filter. The results have shown that yaw information with a precision smaller than 0.5 degrees should be used to improve existing positioning algorithms by more than 10%.

DiLO: Direct light detection and ranging odometry based on spherical range images for autonomous driving

  • Han, Seung-Jun;Kang, Jungyu;Min, Kyoung-Wook;Choi, Jungdan
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.603-616
    • /
    • 2021
  • Over the last few years, autonomous vehicles have progressed very rapidly. The odometry technique that estimates displacement from consecutive sensor inputs is an essential technique for autonomous driving. In this article, we propose a fast, robust, and accurate odometry technique. The proposed technique is light detection and ranging (LiDAR)-based direct odometry, which uses a spherical range image (SRI) that projects a three-dimensional point cloud onto a two-dimensional spherical image plane. Direct odometry is developed in a vision-based method, and a fast execution speed can be expected. However, applying LiDAR data is difficult because of the sparsity. To solve this problem, we propose an SRI generation method and mathematical analysis, two key point sampling methods using SRI to increase precision and robustness, and a fast optimization method. The proposed technique was tested with the KITTI dataset and real environments. Evaluation results yielded a translation error of 0.69%, a rotation error of 0.0031°/m in the KITTI training dataset, and an execution time of 17 ms. The results demonstrated high precision comparable with state-of-the-art and remarkably higher speed than conventional techniques.

Implementation of an Environmental Monitoring System based on LoRa for Smart Field Irrigation (노지 관수를 위한 로라 기반 환경 모니터링 시스템 구현)

  • Kim, Byungsoon
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.11-16
    • /
    • 2019
  • Wireless sensor network is important for precision farming to monitor the growth environment of crops in open field, but radio signals are susceptible to different types of interference such as weather and physical objects. This paper designs and implements an environmental monitoring and weather forecast acquisition systems for smart field irrigation based on LoRa(Long Range) and then applies it to a test bed. And we evaluate the network reliability in terms of packet transmission success rate by comparing its condition on two criteria; the existence of obstacle or rain. The results show that much rain falls can affect on packet loss in LoRa field networks with obstacles.

Fabrication and evaluation of hydrophobic metal stent using electron beam equipment (전자빔 처리를 통한 발수성 금속 스텐트 제작 및 평가)

  • Kim, Jisoo;Park, Jongsung
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.165-169
    • /
    • 2021
  • The objective of this study was to fabricate a novel hydrophobic stent for reducing restenosis by employing electron beam equipment. The stent was fabricated from a CoCr alloy tube by using a femtosecond laser and was treated with argon plasma. Subsequently, the stent's surface specification changed from hydrophilic to hydrophobic. Application of the electron beam offers several advantages such as a short processing time, whole surface reforming, and enhancement of material properties. As the surface of the stent was rendered hydrophobic, it can provide equivalent or enhanced mechanical properties and greater functionality with a higher radial force at the extended stent in a blood vessel. The obtained results corresponding to the mechanical properties indicate that the contact angle increased to approximately 130°, and the radial force increased to approximately 3 N. Furthermore, cell culture experiments were conducted for verifying whether cells were cultured on the surface-modified CoCr surface. Based on the obtained results, it is believed that an effective reduction in the restenosis of inserted vascular stents is possible.

Force Tracking Control of a Smart Flexible Gripper Featuring Piezoceramic Actuators (압전 세라믹 작동기로 구성된 스마트 유연 그리퍼의 힘 추적 제어)

  • Choi, Seung-Bok;Cheong, Chae-Cheon;Lee, Chul-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.174-184
    • /
    • 1997
  • This paper presents a robust force tracking control of a smart flexible gripper featured by a piezoceramic actuator characterizing its durability and quick response time. A mathematical governing equation for the proposed gripper structure is derived by employing Hamilton's principle and a state space control model is subsequently obtained through model analysis. Uncertain system parameters such as frequency variation are included in the control model. A sliding mode control theory which has inherent robustness to the sys- tem uncertainties is adopted to design a force tracking controller for the piezoceramic actuator. Using out- put information from the tip force sensor, a full-order observer is constructed to estimate state variables of the system. Force tracking performances for desired trajectories represented by sinusoidal and step func- tions are evaluated by undertaking both simulation and experimental works. In addition, in order to illustrate practical feasibility of the proposed method, a two-fingered gripper is constructed and its performance is demonstrated by showing a capability of holding an object.

  • PDF

Geometric error assessment system for linear guideway using laser-photodiodes (레이저-수광소자를 이용한 선형 이송측의 기하학적 오차측정 시스템)

  • Pahk, H.J.;Chu, C.N.;Hwang, S.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.180-188
    • /
    • 1994
  • Error assessment and evaluation for machine for machine tool slides have been considered as essential tools for improving accuracy. In this paper, a computer aided measurement technique is proposed using photo pin diodes of quadrant type and laser source. In thedeveloped system, three photo diodes are mounted on a sensor mounting table, and the sensored signal is processed by specially designed signal conditioner to give fine resolution with minimum noise. A micro computer inputs the processed signal, and the geometric errors of five degree of freedoms are successfully evaluated. Pitch, roll, yaw, vertical and horizontal straightness errors are thus assessed simultaneously for a machine tool slide. Calibration techniques such as optics calibration, photo diode calibration are proposed and implemented, giving precise calibration for the measurement system. The developed system has been applied to a practical machine tool slide, and has been found as one of efficient and precise technique for machine tool slide.

  • PDF

Active Vibration Control of a Composite Beam Using Piezoelectric Films (압전필름을 이용한 복합재료 외팔보의 능동진동제어)

  • Kim, S.H.;Choi, S.B.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.54-62
    • /
    • 1994
  • This paper presents active control methodologies to suppress structural deflections of a composite beam using a distributed piezoelectric-film actuator and sensor. Three types of different controllers are employed to achieve vibration suppression. The controllers are established depending upon the information on the velocity components of the structrue and on the deflection magnitudes as well. They are constant-amplitude controller(CAC), constant-gain mcontroller(CGC), and constant-amplitude-gain controller(CAGC). For the minimization of the residual vibration (chattering in a settled phase), which is the practical shortcoming of the conventional CAC dur to time delay phenomenon of the hardware system, a new control algoritym CAGCis designed by selecting switching constants in an optimal manner with respect to the initial tip deflection and the applied voltage. The experimental investigations of the transient and forced vibration control for the first vibrational mode are undertaken in order to compare the suppression efficiency of each control algorithm. Moreover, simultaneous controllability of various vibrational modes through the proposed scheme is also experimentally verified by pressenting both the transfer function and the phase.

  • PDF