• Title/Summary/Keyword: Sensor Data Processing

Search Result 1,382, Processing Time 0.031 seconds

A Study on Development of Remote Crane Wire Rope Flaws Detection Systems (원격 크레인 와이어 로프 결함 탐지 시스템 개발에 관한 연구)

  • Min, Jeong-Tak;Lee, Jin-Woo;Lee, Kwon-Soon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.97-102
    • /
    • 2003
  • Wire ropes are used in a myriad of various industrial applications such as elevator, mine hoist, construction machinery, lift, and suspension bridge. Especially, the wire rope of crane is important component to container transfer. If it happens wire rope failures during the operation, it may lead to safety accident, economic loss by productivity decline and so on. To solve this problem, we developed remote wire rope fault detecting system, and this system is consisted of 3 parts that portable fault detecting part, signal processing part and remote monitoring part. All detected signal has external noise or disturbance according to circumstances. So, we applied to discrete wavelet transform to extract a signal from noisy data. It is verified that the detecting system by de-noising has good efficiency for inspecting faults of wire ropes in service. As a result, by developing this system, container terminal could reduce expense because of extension fo wire ropes exchange period and could competitive power. Also, this system is possible to apply in several field such as elevator, lift and so on.

Automatic Extraction of Abstract Components for supporting Model-driven Development of Components (모델기반 컴포넌트 개발방법론의 지원을 위한 추상컴포넌트 자동 추출기법)

  • Yun, Sang Kwon;Park, Min Gyu;Choi, Yunja
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.543-554
    • /
    • 2013
  • Model-Driven Development(MDD) helps developers verify requirements and design issues of a software system in the early stage of development process by taking advantage of a software model which is the most highly abstracted form of a software system. In practice, however, many software systems have been developed through a code-centric method that builds a software system bottom-up rather than top-down. So, without support of appropriate tools, it is not easy to introduce MDD to real development process. Although there are many researches about extracting a model from code to help developers introduce MDD to code-centrically developed system, most of them only extracted base-level models. However, using concept of abstract component one can continuously extract higher level model from base-level model. In this paper we propose a practical method for automatic extraction of base level abstract component from source code, which is the first stage of continuous extraction process of abstract component, and validate the method by implementing an extraction tool based on the method. Target code chosen is the source code of TinyOS, an operating system for wireless sensor networks. The tool is applied to the source code of TinyOS, written in nesC language.

The effects of digital image processing for noise reduction on observer performance (노이즈 감소 필터 사용이 판독능에 미치는 효과)

  • Jung, Young-Chul;Choi, Bo-Ram;Huh, Kyung-Hoi;Yi, Yon-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.40 no.3
    • /
    • pp.103-107
    • /
    • 2010
  • Purpose : This study was performed to examine the effects of image filter on observer performance by counting the number of holes at each wedge step on a radiographic image. Materials and Methods : An aluminum step wedge with 11 steps ranged in thickness from 1.5 mm to 16.5 mm in 1.5 mm increments was fabricated for this study. Each step had 10 notched holes with 1.0 mm diameter on the bottom of the step wedge which were ranged in depths from 0.1 mm to 1.0 mm in 0.1 mm increments. Digital radiographic raw images of the aluminum step wedge were acquired by using CCD intraoral sensor. The images were processed using several types of noise reduction filters and kernel sizes. Three observers counted the number of holes which could be discriminated on each step. The data were analyzed by ANOVA. Results : The number of holes at each step was decreased as the thickness of step was increased. The number of holes at each step on the raw images was significantly higher than that on the processed images. The number of holes was different according to the types and kernel sizes of the image filters. Conclusions : The types and kernel sizes of image filters on observer performance were important, therefore, they should be standardized for commercial digital imaging systems.

Keyword Filtering about Disaster and the Method of Detecting Area in Detecting Real-Time Event Using Twitter (트위터를 활용한 실시간 이벤트 탐지에서의 재난 키워드 필터링과 지명 검출 기법)

  • Ha, Hyunsoo;Hwang, Byung-Yeon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.7
    • /
    • pp.345-350
    • /
    • 2016
  • This research suggests the keyword filtering about disaster and the method of detecting area in real-time event detecting system by analyzing contents of twitter. The diffusion of smart-mobile has lead to a fast spread of SNS and nowadays, various researches based on studying SNS are being processed. Among SNS, the twitter has a characteristic of fast diffusion since it is written in 140 words of short paragraph. Therefore, the tweets that are written by twitter users are able to perform a role of sensor. By using these features the research has been constructed which detects the events that have been occurred. However, people became reluctant to open their information of location because it is reported that private information leakage are increasing. Also, problems associated with accuracy are occurred in process of analyzing the tweet contents that do not follow the spelling rule. Therefore, additional designing keyword filtering and the method of area detection on detecting real-time event process were required in order to develop the accuracy. This research suggests the method of keyword filtering about disaster and two methods of detecting area. One is the method of removing area noise which removes the noise that occurred in the local name words. And the other one is the method of determinating the area which confirms local name words by using landmarks. By applying the method of keyword filtering about disaster and two methods of detecting area, the accuracy has improved. It has improved 49% to 78% by using the method of removing area noise and the other accuracy has improved 49% to 89% by using the method of determinating the area.

Sensitivity of COMS/GOCI Measured Top-of-atmosphere Reflectances to Atmospheric Aerosol Properties (COMS/GOCI 관측값의 대기 에어러솔의 특성에 대한 민감도 분석)

  • Lee, Kwon-Ho;Kim, Young-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.559-569
    • /
    • 2008
  • The Geostationary Ocean Color Imager (GOCI) on board the Communication Ocean Meteorological Satellite (COMS), the first geostationary ocean color sensor, requires accurate atmospheric correction since its eight bands are also affected by atmospheric constituents such as gases, molecules and atmospheric aerosols. Unlike gases and molecules in the atmosphere, aerosols can interact with sunlight by complex scattering and absorption properties. For the purpose of qualified ocean remote sensing, understanding of aerosol-radiation interactions is needed. In this study, we show micro-physical and optical properties of aerosols using the Optical Property of Aerosol and Cloud (OPAC) aerosol models. Aerosol optical properties, then, were used to analysis the relationship between theoretical satellite measured radiation from radiative transfer calculations and aerosol optical thickness (AOT) under various environments (aerosol type and loadings). It is found that the choice of aerosol type makes little different in AOT retrieval for AOT<0.2. Otherwise AOT differences between true and retrieved increase as AOT increases. Furthermore, the differences between the AOT and angstrom exponent from standard algorithms and this study, and the comparison with ground based sunphotometer observations are investigated. Over the northeast Asian region, these comparisons suggest that spatially averaged mean AOT retrieved from this study is much better than from standard ocean color algorithm. Finally, these results will be useful for aerosol retrieval or atmospheric correction of COMS/GOCI data processing.

An Origin-Centric Communication Scheme to Support Sink Mobility for Continuous Object Detection in IWSNs (산업용 무선 센서망을 이용한 연속개체 탐지에서 이동 싱크 지원을 위한 발원점 중심의 통신방안)

  • Kim, Myung-Eun;Kim, Cheonyong;Yim, Yongbin;Kim, Sang-Ha;Son, Young-Sung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.12
    • /
    • pp.301-312
    • /
    • 2018
  • In industrial wireless sensor networks, the continuous object detection such as fire or toxic gas detection is one of major applications. A continuous object occurs at a specific point and then diffuses over a wide area. Therefore, many studies have focused on accurately detecting a continuous object and delivering data to a static sink with an energy-efficient way. Recently, some applications such as fire suppression require mobile sinks to provide real-time response. However, the sink mobility support in continuous object detection brings challenging issues. The existing approaches supporting sink mobility are designed for individual object detection, so they establish one-to-one communication between a source and a mobile sink for location update. But these approaches are not appropriate for a continuous object detection since a mobile sink should establish one-to-many communication with all sources. The one-to-many communication increases energy consumption and thus shortens the network lifetime. In this paper, we propose the origin-centric communication scheme to support sink mobility in a continuous object detection. Simulation results verify that the proposed scheme surpasses all the other work in terms of energy consumption.

Metallic FDM Process to Fabricate a Metallic Structure for a Small IoT Device (소형 IoT 용 금속 기구물 제작을 위한 금속 FDM 공정 연구)

  • Kang, In-Koo;Lee, Sun-Ho;Lee, Dong-Jin;Kim, Kun-Woo;Ahn, Il-Hyuk
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.21-26
    • /
    • 2020
  • An autonomous driving system is based on the deep learning system built by big data which are obtained by various IoT sensors. The miniaturization and high performance of the IoT sensors are needed for diverse devices including the autonomous driving system. Specially, the miniaturization of the sensors leads to compel the miniaturization of the fixer structures. In the viewpoint of the miniaturization, metallic structure is a best solution to attach the small IoT sensors to the main body. However, it is hard to manufacture the small metallic structure with a conventional machining process or manufacturing cost greatly increases. As one of solutions for the problems, in this work, metallic FDM (Fused depositon modeling) based on metallic filament was proposed and the FDM process was investigated to fabricate the small metallic structure. Final part was obtained by the post-process that consists of debinding and sintering. In this work, the relationship between infill rate and the density of the part after the post-process was investigated. The investigation of the relationship is based on the fact that the infill rate and the density obtained from the post-processing is not same. It can be said that this work is a fundamental research to obtain the higher density of the printed part.

Analysis of UAV-based Multispectral Reflectance Variability for Agriculture Monitoring (농업관측을 위한 다중분광 무인기 반사율 변동성 분석)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1379-1391
    • /
    • 2020
  • UAV in the agricultural application are capable of collecting ultra-high resolution image. It is possible to obtain timeliness images for phenological phases of the crop. However, the UAV uses a variety of sensors and multi-temporal images according to the environment. Therefore, it is essential to use normalized image data for time series image application for crop monitoring. This study analyzed the variability of UAV reflectance and vegetation index according to Aviation Image Making Environment to utilize the UAV multispectral image for agricultural monitoring time series. The variability of the reflectance according to environmental factors such as altitude, direction, time, and cloud was very large, ranging from 8% to 11%, but the vegetation index variability was stable, ranging from 1% to 5%. This phenomenon is believed to have various causes such as the characteristics of the UAV multispectral sensor and the normalization of the post-processing program. In order to utilize the time series of unmanned aerial vehicles, it is recommended to use the same ratio function as the vegetation index, and it is recommended to minimize the variability of time series images by setting the same time, altitude and direction as possible.

Grasping a Target Object in Clutter with an Anthropomorphic Robot Hand via RGB-D Vision Intelligence, Target Path Planning and Deep Reinforcement Learning (RGB-D 환경인식 시각 지능, 목표 사물 경로 탐색 및 심층 강화학습에 기반한 사람형 로봇손의 목표 사물 파지)

  • Ryu, Ga Hyeon;Oh, Ji-Heon;Jeong, Jin Gyun;Jung, Hwanseok;Lee, Jin Hyuk;Lopez, Patricio Rivera;Kim, Tae-Seong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.9
    • /
    • pp.363-370
    • /
    • 2022
  • Grasping a target object among clutter objects without collision requires machine intelligence. Machine intelligence includes environment recognition, target & obstacle recognition, collision-free path planning, and object grasping intelligence of robot hands. In this work, we implement such system in simulation and hardware to grasp a target object without collision. We use a RGB-D image sensor to recognize the environment and objects. Various path-finding algorithms been implemented and tested to find collision-free paths. Finally for an anthropomorphic robot hand, object grasping intelligence is learned through deep reinforcement learning. In our simulation environment, grasping a target out of five clutter objects, showed an average success rate of 78.8%and a collision rate of 34% without path planning. Whereas our system combined with path planning showed an average success rate of 94% and an average collision rate of 20%. In our hardware environment grasping a target out of three clutter objects showed an average success rate of 30% and a collision rate of 97% without path planning whereas our system combined with path planning showed an average success rate of 90% and an average collision rate of 23%. Our results show that grasping a target object in clutter is feasible with vision intelligence, path planning, and deep RL.

A Mobile Landmarks Guide : Outdoor Augmented Reality based on LOD and Contextual Device (모바일 랜드마크 가이드 : LOD와 문맥적 장치 기반의 실외 증강현실)

  • Zhao, Bi-Cheng;Rosli, Ahmad Nurzid;Jang, Chol-Hee;Lee, Kee-Sung;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.1-21
    • /
    • 2012
  • In recent years, mobile phone has experienced an extremely fast evolution. It is equipped with high-quality color displays, high resolution cameras, and real-time accelerated 3D graphics. In addition, some other features are includes GPS sensor and Digital Compass, etc. This evolution advent significantly helps the application developers to use the power of smart-phones, to create a rich environment that offers a wide range of services and exciting possibilities. To date mobile AR in outdoor research there are many popular location-based AR services, such Layar and Wikitude. These systems have big limitation the AR contents hardly overlaid on the real target. Another research is context-based AR services using image recognition and tracking. The AR contents are precisely overlaid on the real target. But the real-time performance is restricted by the retrieval time and hardly implement in large scale area. In our work, we exploit to combine advantages of location-based AR with context-based AR. The system can easily find out surrounding landmarks first and then do the recognition and tracking with them. The proposed system mainly consists of two major parts-landmark browsing module and annotation module. In landmark browsing module, user can view an augmented virtual information (information media), such as text, picture and video on their smart-phone viewfinder, when they pointing out their smart-phone to a certain building or landmark. For this, landmark recognition technique is applied in this work. SURF point-based features are used in the matching process due to their robustness. To ensure the image retrieval and matching processes is fast enough for real time tracking, we exploit the contextual device (GPS and digital compass) information. This is necessary to select the nearest and pointed orientation landmarks from the database. The queried image is only matched with this selected data. Therefore, the speed for matching will be significantly increased. Secondly is the annotation module. Instead of viewing only the augmented information media, user can create virtual annotation based on linked data. Having to know a full knowledge about the landmark, are not necessary required. They can simply look for the appropriate topic by searching it with a keyword in linked data. With this, it helps the system to find out target URI in order to generate correct AR contents. On the other hand, in order to recognize target landmarks, images of selected building or landmark are captured from different angle and distance. This procedure looks like a similar processing of building a connection between the real building and the virtual information existed in the Linked Open Data. In our experiments, search range in the database is reduced by clustering images into groups according to their coordinates. A Grid-base clustering method and user location information are used to restrict the retrieval range. Comparing the existed research using cluster and GPS information the retrieval time is around 70~80ms. Experiment results show our approach the retrieval time reduces to around 18~20ms in average. Therefore the totally processing time is reduced from 490~540ms to 438~480ms. The performance improvement will be more obvious when the database growing. It demonstrates the proposed system is efficient and robust in many cases.