• 제목/요약/키워드: Sensor Data Processing

검색결과 1,395건 처리시간 0.028초

위성탑재 영상레이다 디지털 수신기에서의 양자화 영향성 분석 (Digitization Impact on the Spaceborne Synthetic Aperture Radar Digital Receiver Analysis)

  • 임성재;이현익;성진봉;김세영
    • 한국항공우주학회지
    • /
    • 제49권11호
    • /
    • pp.933-940
    • /
    • 2021
  • 위성탑재 영상레이다 시스템은 마이크로파를 방사하여 지상에서 되튕겨온 신호를 수신한다. 수신된 신호는 영상레이다 수신경로의 마지막에 위치한 디지털 수신기에서 디지털 신호로 변환된다. 변환된 디지털 신호는 필터링, 압축 및 포맷팅 과정을 거친다. 디지털 수신기의 신호처리 과정은 두 차례의 양자화로 수행된다. 첫 번째는 아날로그 신호를 디지털 신호로 변환하는 과정이고, 다른 하나는 BAQ를 이용한 압축과정이다. 양자화는 높은 비트에서 낮은 비트로 변환하는 과정으로 양자화 오차가 발생한다. 본 논문에서는 SNR 저하의 관점에서 디지털 수신기에서 수행되는 양자화의 영향성을 분석하였다.

CSI를 활용한 딥러닝 기반의 실내 사람 수 추정 기법 (A Deep Learning Based Device-free Indoor People Counting Using CSI)

  • 안현성;김승구
    • 한국정보통신학회논문지
    • /
    • 제24권7호
    • /
    • pp.935-941
    • /
    • 2020
  • 사람 수 추정 기술은 IoT 서비스를 제공하기 위해 중요하다. 대부분의 사람 수 추정 기술은 카메라 또는 센서 데이터를 활용한다. 하지만 기존 기술들은 사생활 침해 문제가 발생 가능하며 추가로 인프라를 구축해야한다는 단점이 있다. 본 논문은 Wi-Fi AP를 활용하여 사람 수를 추정하는 방법을 제안한다. 사람 수 추정을 위해서 Wi-Fi의 채널 상태 정보를 딥러닝 기술을 활용하여 분석한다. Wi-Fi AP 기반 사람 수 추정 기술은 사생활 침해 우려가 없으며, 기존 Wi-Fi AP 인프라를 활용하면 되기 때문에 추가 비용이 발생하지 않는다. 제안하는 알고리즘은 k-바인딩 데이터 전처리 과정과 1D-CNN 학습 모델을 사용한다. AP 2대를 설치하여 6명의 사람 수 추정 결과를 실험을 통해 분석하였다. 정확한 사람 수 판별에 관한 결과는 64.8%로 낮은 결과를 보였지만, 사람의 수를 클래스로 분류한 결과는 84.5%의 높은 결과를 보였다. 해당 알고리즘은 제한된 공간에 사람의 밀집도를 파악하는데 응용 가능할 것으로 기대된다.

트리 기반 부스팅 알고리듬을 이용한 상수도관 누수 탐지 방법 (Leakage Detection Method in Water Pipe using Tree-based Boosting Algorithm)

  • 이재흥;오윤성;민준혁
    • 사물인터넷융복합논문지
    • /
    • 제10권2호
    • /
    • pp.17-23
    • /
    • 2024
  • 국내 상수도관의 파열, 결함 등으로 인한 누수율로 인한 손실이 매우 크고, 이런 누수를 예방을 위한 방지 대책이 필요한 상황이다. 본 논문에서는 진동 센서를 활용한 누수 탐지 센서를 개발하고 인공지능 기술을 활용한 최적의 누수 탐지 알고리듬을 제시하고자 한다. 상수도 배관에서 취득한 진동음은 FFT(Fast Fourier Transform)를 이용한 전처리 과정을 거친 뒤, 최적화된 트리 기반 부스팅 알고리듬을 적용하여 누수 분류를 하였다. 다양한 실증 환경에서 취득한 약 26만여 개의 실험 데이터에 적용한 결과 기존의 SVM(Support Vector Machine) 방법에 비해약 4%가 향상된 97%의 정확도를 얻었고, 연산 처리속도는 약 1,362배가 향상되어 엣지 디바이스 적용에도 적합함을 확인하였다.

IoT-Based Automatic Water Quality Monitoring System with Optimized Neural Network

  • Anusha Bamini A M;Chitra R;Saurabh Agarwal;Hyunsung Kim;Punitha Stephan;Thompson Stephan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권1호
    • /
    • pp.46-63
    • /
    • 2024
  • One of the biggest dangers in the globe is water contamination. Water is a necessity for human survival. In most cities, the digging of borewells is restricted. In some cities, the borewell is allowed for only drinking water. Hence, the scarcity of drinking water is a vital issue for industries and villas. Most of the water sources in and around the cities are also polluted, and it will cause significant health issues. Real-time quality observation is necessary to guarantee a secure supply of drinking water. We offer a model of a low-cost system of monitoring real-time water quality using IoT to address this issue. The potential for supporting the real world has expanded with the introduction of IoT and other sensors. Multiple sensors make up the suggested system, which is utilized to identify the physical and chemical features of the water. Various sensors can measure the parameters such as temperature, pH, and turbidity. The core controller can process the values measured by sensors. An Arduino model is implemented in the core controller. The sensor data is forwarded to the cloud database using a WI-FI setup. The observed data will be transferred and stored in a cloud-based database for further processing. It wasn't easy to analyze the water quality every time. Hence, an Optimized Neural Network-based automation system identifies water quality from remote locations. The performance of the feed-forward neural network classifier is further enhanced with a hybrid GA- PSO algorithm. The optimized neural network outperforms water quality prediction applications and yields 91% accuracy. The accuracy of the developed model is increased by 20% because of optimizing network parameters compared to the traditional feed-forward neural network. Significant improvement in precision and recall is also evidenced in the proposed work.

NFC를 활용한 압출생산현장의 Bottleneck 개선을 통한 스마트팩토리 구현 연구 (Research on The Implementation of Smart Factories through Bottleneck improvement on extrusion production sites using NFC)

  • 임동진;권규식
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.104-112
    • /
    • 2021
  • 프로세스 산업 군에 속하는 압출 공정에서도 스마트팩토리 구축의 필요성은 증가하고 있다. 그러나 대부분의 압출 생산 현장에서는 생산방식이 연속적이며, 데이터의 속성이 비정형적이므로 데이터 처리의 어려움을 겪고 있다. 많은 중소기업 공장에서는 데이터 수집을 위해 수기 기록을 주로 하고, 바코드를 많이 활용하고 있다. 생산에 관련된 데이터를 종이양식에 수기 기록하게 되면 별도의 EXCEL프로그램 등에 다시 기록해야 하는 이중 작업을 할 수 밖에 없는 단점이 있다. 바코드는 주로 재고관리에 활용하고 있으며 프린팅을 위한 유지보수 비용이 요구된다. 또한 설치를 완료하면 변경이 어려워 활용성이 낮다고 할 수 있다. 이를 해결하기 위해 데이터의 수기입력이 아닌 NFC 센서를 활용한 방법론을 제시하였다. 이를 가능하게하기 위해 공장 내에 인터넷이 가능하도록 무선 네트워크 환경을 구축하였고 생산 공정프로세스를 분석하고 이를 기반으로 관계형 데이터베이스를 구축하였다. 비접촉 근거리 통신방식(NFC: Near Field Communication, 이하 NFC)을 통한 생산 실적 자료 입력 방법을 연구하였고, EXCEL 프로그램의 피벗 기능을 사용하여 제품 생산 시 발생할 수 있는 품질문제에 대해 쉽고 빠르게 분석하여 원인을 파악하고 조치할 수 있게 하는 분석방법을 구현하였다. 결과적으로 NFC 기능을 활용한 데이터 입력이 자동화되었으며, 작업자의 데이터 처리 시간 감소라는 정량적 효과를 얻게 되었다. 또한 입력된 데이터를 활용하여 품질 문제로 인한 Bottleneck이 개선된 사례를 제시하고자 한다.

랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법의 분석 및 성능평가 (Analysis and Evaluation of Frequent Pattern Mining Technique based on Landmark Window)

  • 편광범;윤은일
    • 인터넷정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.101-107
    • /
    • 2014
  • 본 논문에서는 랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법을 분석하고 성능을 평가한다. 본 논문에서는 Lossy counting 알고리즘과 hMiner 알고리즘에 대한 분석을 진행한다. 최신의 랜드마크 알고리즘인 hMiner는 트랜잭션이 발생할 때 마다 빈발 패턴을 마이닝 하는 방법이다. 그래서 hMiner와 같은 랜드마크 기반의 빈발 패턴 마이닝을 온라인 마이닝이라고 한다. 본 논문에서는 랜드마크 윈도우 마이닝의 초기 알고리즘인 Lossy counting와 최신 알고리즘인 hMiner의 성능을 평가하고 분석한다. 우리는 성능평가의 척도로 마이닝 시간과 트랜잭션 당 평균 처리 시간을 평가한다. 그리고 우리는 저장 구조의 효율성을 평가하기 위하여 최대 메모리 사용량을 평가한다. 마지막으로 우리는 알고리즘이 안정적으로 마이닝이 가능한지 평가하기 위해 데이터베이스의 아이템 수를 변화시키면서 평가하는 확장성 평가를 수행한다. 두 알고리즘의 평가 결과로, 랜드마크 윈도우 기반의 빈발 패턴 마이닝은 실시간 시스템에 적합한 마이닝 방식을 가지고 있지만 메모리를 많이 사용했다.

향상된 음향 신호 기반의 음향 이벤트 분류 (Enhanced Sound Signal Based Sound-Event Classification)

  • 최용주;이종욱;박대희;정용화
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권5호
    • /
    • pp.193-204
    • /
    • 2019
  • 센서 기술과 컴퓨팅 성능의 향상으로 인한 데이터의 폭증은 산업 현장의 상황을 분석하기 위한 토대가 되었으며, 이와 같은 데이터를 기반으로 현장에서 발생하는 다양한 이벤트를 탐지 및 분류하려는 시도들이 최근 증가하고 있다. 특히 음향 센서는 상대적으로 저가의 가격으로 현장 정보를 왜곡 없이 음향 신호를 수집할 수 있다는 큰 장점을 기반으로 다양한 분야에 설치되고 있다. 그러나 소리 취득 시 발생하는 잡음을 효과적으로 제어하지 못한다면 산업 현장의 이벤트를 안정적으로 분류할 수 없으며, 분류하지 못한 이벤트가 이상 상황이라면 이로 인한 피해는 막대해질 수 있다. 본 연구에서는 잡음 상황에서도 강인한 시스템을 보장하기 위하여, 딥러닝 알고리즘을 기반으로 잡음의 영향을 개선 시킨 음향 신호를 생성한 후, 해당 음향 이벤트를 분류할 수 있는 시스템을 제안한다. 특히, GAN을 기반으로 VAE 기술을 적용한 SEGAN을 활용하여 아날로그 음향 신호 자체에서 잡음이 제거된 신호를 생성하였으며, 향상된 음향 신호를 데이터 변환과정 없이 CNN 구조의 입력 데이터로 활용한 후 음향 이벤트에 대한 식별까지도 가능하도록 end-to-end 기반의 음향 이벤트 분류 시스템을 설계하였다. 산업 현장에서 취득한 음향 데이터를 활용하여 제안하는 시스템의 성능을 실험적으로 검증한바, 99.29%(철도산업)와 97.80%(축산업)의 안정적인 분류 성능을 확인하였다.

편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화 (A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing)

  • 이승현;김민영
    • 전자공학회논문지
    • /
    • 제50권8호
    • /
    • pp.253-263
    • /
    • 2013
  • 광학측정기법 중 주파수 스캐닝 간섭계는 기존 3차원 측정기법과 비교하여 광학 하드웨어 구조가 측정과정동안 고정되어 있어, 대물렌즈나 대상물체의 수직 스캐닝 없이 단지 광원의 주파수만 특정한 주파수 밴드내에서 스캐닝 하여 대상물체에 주사되므로, 우수한 광학 측정 성능을 보인다. 광원의 주파수를 변경하여 간섭계를 통해 간섭 영상을 획득한 후, 밝기 영상 데이터를 주파수 영역 데이터로 변환하고, 고속 푸리에 변환을 통한 주파수 분석을 이용하여 대상 물체의 높이 정보를 계측한다. 하지만, 대상물체의 광학적 특성에 기인한 광학노이즈와 주파수 스캐닝동안 획득되는 영상의 수에 따라 증가하는 영상처리시간은 여전히 주파수 스캐닝 간섭계의 문제이다. 이를 위해, 1) 편광기반 주파수 스캐닝 간섭계가 광학 노이즈에 대한 강인성을 확보하기 위해 제안되어진다. 시스템은 주파수 변조 레이저, 참조 거울 앞단의 ${\lambda}/4$ 판, 대상 물체 앞단의 ${\lambda}/4$ 판, 편광 광분배기, 이미지 센서 앞단의 편광기, 광섬유 광원 앞단의 편광기, 편광 광분배기와 광원의 편광기 사이에 위치하는 ${\lambda}/2$ 판으로 구성된다. 제안된 시스템을 이용하여, 편광을 기반으로한 간섭이미지의 대조대비를 조절할 수 있다. 2) 신호처리 고속화 방법이 간섭계 시스템을 위해 제안되며, 이는 그래픽 처리 유닛(GPU)과 같은 병렬처리 하드웨어와 계산 통합 기기 구조(CUDA)와 같은 프로그래밍 언어로 구현된다. 제안된 방법을 통해 신호처리 시간은 실시간 처리가 가능한 작업시간을 얻을 수 있었다. 최종적으로 다양한 실험을 통해 제안된 시스템을 정확도와 신호처리 시간의 관점으로 평가하였고, 실험결과를 통해 제안한 시스템이 광학측정기법의 실적용을 위해 효율적임을 보였다.

오픈소스 기반 다목적실용위성 3A호 영상자료의 지표면 반사도 영상 제작 실험 (An Experiment for Surface Reflectance Image Generation of KOMPSAT 3A Image Data by Open Source Implementation)

  • 이기원;김광섭
    • 대한원격탐사학회지
    • /
    • 제35권6_4호
    • /
    • pp.1327-1339
    • /
    • 2019
  • 지구 관측 위성에 의한 광학 영상정보를 육상 분야에 활용하는 경우 지표면 반사도를 나타내는 영상은 중요한 기초 정보가 된다. 지표면 반사도는 광학 영상정보에 대하여 절대 대기 보정 처리 과정을 수행하여 얻어지는 성과물이다. Landsat이나 Sentinel-2의 경우 여러 가지 단계의 대기 보정 처리 방법이 개발되어 있고, 이미 많은 상업적 소프트웨어나 오픈소스 들이 이러한 처리 알고리즘을 지원한다. 그러나 현재 KOMPSAT 3/3A호 고해상도 분광 영상정보를 이용하여 지표면 반사도 영상 제작 기능을 제공하는 도구는 거의 없고 이러한 기능을 제공하는 오픈소스가 개발되거나 발표된 경우도 없다. 이 연구에서 우분투(Ubuntu) 운영체제에서 Orfeo ToolBox(OTB) 원격탐사 오픈소스에 포함된 광학 보정(Optical Calibration) 모듈과 알고리즘을 기반으로 하여 KOMPSAT 3A호 영상에 대한 절대 대기 보정을 처리할 수 있는 모듈을 새로 구현하였다. 이 모듈은 KOMPSAT 영상의 센서 모델 변수와 분광 자료들을 포함하기 때문에 대기 보정 작업에 필요한 입력 변수의 자동 입력과 일괄처리가 가능하다. 이 모듈을 이용하여 상층대기(Top of Atmosphere: TOA)반사도와 지표면(Top of Canopy: TOC) 반사도를 구할 수 있다. 한편 TOC 반사도 산출과정에서는 AERONET 자료와 같은 대기 에어로졸 정보가 이용될 수 있다. 또한 이 연구에서 구현된 오픈소스 성과를 이용하여 KOMPSAT 영상을 적용한 실험을 수행하였다. 앞으로 이 오픈소스 모듈의 적용성과 무결성 검사를 수행하게 되면, 그동안 축적된 KOMPSAT 영상정보를 대상으로 하는 분석 대기 자료(Analysis Ready Data) 데이터베이스 구축에 직접 적용될 수 있다.

특수교 계측 데이터 자동 통계 분석 툴 개발 (Development of Automated Statistical Analysis Tool using Measurement Data in Cable-Supported Bridges)

  • 김재환;박상기;정규산;서동우
    • 한국방재안전학회논문집
    • /
    • 제15권3호
    • /
    • pp.79-88
    • /
    • 2022
  • 특수교는 중요한 대형 시설물로 장기적이고 체계적인 유지관리 전략을 필요로 한다. 특히, 시설물 부재별 및 위치별로 다양한 센서를 설치하고 계측 항목별 관리 기준치 설정과 같은 시설물의 안전 확보를 위해 여러 방안들이 제시되고 있다. 이 중 지속적으로 증가하는 특수교의 수와 여러 센서에서 수집되는 데이터를 효율적으로 관리하기 위한 전략적인 방안을 제시해야 할 필요가 있다. 본 연구에서는 특수교 계측 시스템에서 수집되는 광범위한 데이터를 효율적으로 분석하기 위한 목적으로 자동적으로 이상신호를 처리하고 통계 결과를 산출할 수 있는 분석 툴을 개발하고자 한다. 분석 툴 개발을 위해 우선 특수교에 설치된 주요 센서 종류 및 수량과 같은 기본적인 정보와 수집된 데이터에 대한 신호 특성을 분석하였다. 이후 험펠 필터 기법을 활용 신호의 이상 유무를 판별하고 필터링하여 통계 결과를 산출하였다. 마지막으로 개발된 분석 툴의 성능 검증을 위해 현재 공용 중인 사장교와 현수교 형식의 교량을 각 1개소씩 성능검증 대상 교량으로 선정하여 신호처리 및 자동 통계 분석 성능을 실시하였고, 기존의 통계 작업 결과와 유사한 결과를 산출 할 수 있었다.