• 제목/요약/키워드: Sensor Data Process

검색결과 990건 처리시간 0.023초

사업장의 경계면에서 화학물질 감지 및 대응을 위한 이동식 센서 배치 최적화 (Mobile Sensor Velocity Optimization for Chemical Detection and Response in Chemical Plant Fence Monitoring)

  • 박명남;김현승;조재훈;아디스;신동일
    • 한국가스학회지
    • /
    • 제21권2호
    • /
    • pp.41-49
    • /
    • 2017
  • 최근 화학물질을 사용하는 시설이 증가하면서 취급양도 급속하게 증가하고 있다. 그러나 화학물질 누출사고는 꾸준히 발생되고 있으며 때에 따라 다량의 화학물질이 누출되는 경우에는 큰 피해로 이어질 가능성이 크다. 이러한 산업단지에는 수많은 센서로부터 얻는 정보를 이용해 누출 발생지역을 감지 감시하고 있으며, 기존의 고정식 센서를 로봇이나 드론에 적용하여 산업현장에 이용되고 있다. 이에 따라 화학물질을 취급하는 공정의 누출조건, 환경조건을 반영한 다양한 누출 시나리오를 토대로 빠른 감지와 대응을 위해 경계면의 센서 배치 방안을 제시할 필요가 있다. 따라서 본 연구에서는 화학물질이 누출되는 경우에 대해 COMSOL을 사용하여 주요 파라미터를 적용, 실질적인 사고 시나리오를 해석하였다. 그리고 사고 시나리오를 바탕으로 센서의 감지 확률, 감지시간과 감지시나리오 수의 각 항목마다 중요도를 부여하여 이동식 센서의 위치별 속도가 산출되도록 목적함수를 선정하였다. 또한 예상치 못한 누출사고에 대해 신뢰성 분석을 통해 제안방법의 타당성을 확인하였다. 이상의 결과로부터 추후 적용될 이동식 센서의 농도 데이터를 기반으로 누출원의 역추적에도 도움을 줄 수 있을 것으로 기대한다.

Adaptive Time Delay Compensation Process in Networked Control System

  • Kim, Yong-Gil;Moon, Kyung-Il
    • International journal of advanced smart convergence
    • /
    • 제5권1호
    • /
    • pp.34-46
    • /
    • 2016
  • Networked Control System (NCS) has evolved in the past decade through the advances in communication technology. The problems involved in NCS are broadly classified into two categories namely network issues due to network and control performance due to system network. The network problems are related to bandwidth allocation, scheduling and network security, and the control problems deal with stability analysis and delay compensation. Various delays with variable length occur due to sharing a common network medium. Though most delays are very less and mostly neglected, the network induced delay is significant. It occurs when sensors, actuators, and controllers exchange data packet across the communication network. Networked induced delay arises from sensor to controller and controller to actuator. This paper presents an adaptive delay compensation process for efficient control. Though Smith predictor has been commonly used as dead time compensators, it is not adaptive to match with the stochastic behavior of network characteristics. Time delay adaptive compensation gives an effective control to solve dead time, and creates a virtual environment using the plant model and computed delay which is used to compensate the effect of delay. This approach is simulated using TrueTime simulator that is a Matlab Simulink based simulator facilitates co-simulation of controller task execution in real-time kernels, network transmissions and continuous plant dynamics for NCS. The simulation result is analyzed, and it is confirmed that this control provides good performance.

초음파 금속 용착용 반파장 혼의 설계 (A Horn of Half-Wave Design for Ultrasonic Metal Welding)

  • 장호수;박우열;박동삼
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.76-81
    • /
    • 2012
  • Ultrasonic metal welding is one of the welding methods which welds metal by applying high frequency vibrational energy into specific area at constant pressure, avaliable in room temperature and low temperature. Ultrasonic metal welder is consisted of power supply, transducer, booster, and horn. Precise designing is required since each parts' shape, length and mass can affect driving frequency and vibration mode. This paper focused to horn design, its length L was set to 62mm by calculating vibration equation. By performing modal analysis with various shape variable b times integer, when length of b is 30mm the output was 39,599Hz at 10th mode. Also by performing harmonic response analysis, the frequency response result was 39,533Hz, which was similar to modal analysis result. In order to observe the designed horn's performance, about 4,000 voltage data was obtained from a light sensor and was analyzed by FFT analysis using Origin Tool. The result RMS amplitude was approximately 8.5${\mu}m$ at 40,000Hz, and maximum amplitude was 12.3${\mu}m$. Therefore, it was verified that the ultrasonic metal welding horn was optimally designed.

System Modeling and Robust Control of an AMB Spindle : Part I Modeling and Validation for Robust Control

  • Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1844-1854
    • /
    • 2003
  • This paper discusses details of modeling and robust control of an AMB (active magnetic bearing) spindle, and part I presents a modeling and validation process of the AMB spindle. There are many components in AMB spindle : electromagnetic actuator, sensor, rotor, power amplifier and digital controller. If each component is carefully modeled and evaluated, the components have tight structured uncertainty bounds and achievable performance of the system increases. However, since some unknown dynamics may exist and the augmented plant could show some discrepancy with the real plant, the validation of the augmented plant is needed through measuring overall frequency responses of the actual plant. In addition, it is necessary to combine several components and identify them with a reduced order model. First, all components of the AMB spindle are carefully modeled and identified based on experimental data, which also render valuable information in quantifying structured uncertainties. Since sensors, power amplifiers and discretization dynamics can be considered as time delay components, such dynamics are combined and identified with a reduced order. Then, frequency responses of the open-loop plant are measured through closed-loop experiments to validate the augmented plant. The whole modeling process gives an accurate nominal model of a low order for the robust control design.

INTRODUCTION OF NUC ALGORITHM IN ON-BOARD RELATIVE RADIOMERIC CALIBRATION OF KOMPSAT-2

  • Song, J.H.;Choi, M.J.;Seo, D.C.;Lee, D.H.;Lim, H.S.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.504-507
    • /
    • 2007
  • The KOMPSAT-2 satellite is a push-broom system with MSC (Multi Spectral Camera) which contains a panchromatic band and four multi-spectral bands covering the spectral range from 450nm to 900nm. The PAN band is composed of six CCD array with 2528 pixels. And the MS band has one CCD array with 3792 pixels. Raw imagery generated from a push-broom sensor contains vertical streaks caused by variability in detector response, variability in lens falloff, pixel area, output amplifiers and especially electrical gain and offset. Relative radiometric calibration is necessary to account for the detector-to-detector non-uniformity in this raw imagery. Non-uniformity correction (NUC) is that the process of performing on-board relative correction of gain and offset for each pixel to improve data compressibility and to reduce banding and streaking from aggregation or re-sampling in the imagery. A relative gain and offset are calculated for each detector using scenes from uniform target area such as a large desert, forest, sea. In the NUC of KOMPSAT-2, The NUC table for each pixel are divided as HF NUC (high frequency NUC) and LF NUC (low frequency NUC) to apply to few restricted facts in the operating system ofKOMPSAT-2. This work presents the algorithm and process of NUC table generation and shows the imagery to compare with and without calibration.

  • PDF

한옥의 통합 쾌적성능 평가체계 구축에 관한 연구 (A Study on the Establishment of an Evaluation System for Integrative Comfort Performance of Hanok Residence)

  • 한승훈;천득염;이미향;임옥균
    • 한국주거학회논문집
    • /
    • 제24권3호
    • /
    • pp.27-35
    • /
    • 2013
  • The purpose of this study is to develop an evaluation system for integrative comfort values of Hanok residence. For this study, a mock-up located in Yongin, Gyeonggi province built by an ongoing governmental research project has been chosen. Then, SSN (Smart Sensor Network) has been utilized for monitoring quantitative factors in the environment and detailed face-to-face surveys have been performed for analyzing qualitative comfort indexes from residents in the experimental settings. Then, this study employs a combined evaluation system using AHP (Analytic Hierarchy Process) established for estimating overall DIC (Degree of Integrative Comfort) of the Hanok residence. As a result, the evaluation system could verify the total comfort indexes of Hanok residence and suggest converged methodologies for establishing value assessment system for traditional residential facilities. The method of DIC suggested in this paper would be examined with current residents in a built mock-up to see its applicability as a comprehensive evaluation model, and it is expected that collected year-round comfort data from the facility would provide more practical information towards future strategies for the Hanok residence.

인공신경망을 이용한 머신러닝 기반의 연료펌프 고장예지 연구 (Study of Fuel Pump Failure Prognostic Based on Machine Learning Using Artificial Neural Network)

  • 최홍;김태경;허경린;최성대;허장욱
    • 한국기계가공학회지
    • /
    • 제18권9호
    • /
    • pp.52-57
    • /
    • 2019
  • The key technology of the fourth industrial revolution is artificial intelligence and machine learning. In this study, FMEA was performed on fuel pumps used as key items in most systems to identify major failure components, and artificial neural networks were built using big data. The main failure mode of the fuel pump identified by the test was coil damage due to overheating. Based on the artificial neural network built, machine learning was conducted to predict the failure and the mean error rate was 4.9% when the number of hidden nodes in the artificial neural network was three and the temperature increased to $140^{\circ}C$ rapidly.

사출성형에서 공정 중 금형의 진동 크기 변화를 활용한 냉각시간 모니터링에 대한 연구 (A study on the monitoring of cooling time using the change in the magnitude of mold vibration in injection molding)

  • ;김종선
    • Design & Manufacturing
    • /
    • 제15권3호
    • /
    • pp.45-49
    • /
    • 2021
  • In this study, during the injection molding process, a device was manufactured and evaluated that calculates a cooling time by measuring a vibration signal generated from a mold using an acceleration. The last two parts, one of which has a large magnitude change in the measured vibration signal of a mold, were divided into a cooling start section (paking end section) and a mold opening section, and the time difference at the relevant points was calculated as the cooling time. The cooling time was monitored on a 5-inch light guide plate mold by applying the method. The manufactured device was attached to a fixed base of mold to measure the cooling time, and data was obtained remotely using Bluetooth technology. Then, the measured cooling time was compared with the cooling time set in the injection molding machine to evaluate the accuracy. As a result of the experiment, the cooling times measured by the devices were 15.675±0.024 sec, 20.637±0.014 sec and 25.623±0.079 sec of each conditions. Also, the measurement results were shown with errors of 0.655±0.044 sec, 0.637±0.014 sec, and 0.662±0.013 sec, respectively.

소프트웨어 개발 방법론에 따른 양배수장 디지털 트윈 시스템 개발과정 고찰 (Exploration of Water Pumping Station Digital Twin System Development Process According to Software Development Methodologies)

  • 이병준;김난영;윤성수
    • 한국농공학회논문집
    • /
    • 제66권3호
    • /
    • pp.53-62
    • /
    • 2024
  • The purpose of this study is to examine the methodology for applying digital twin technology to pumping station, identify the factors to be determined at each stage, and present its applicability. When analyzing the requirements for developing a digital twin for pumping station, they were categorized into service requirements, IoT device requirements, and gateway requirements, with a total of 39 requirements established. In system design, it was structured according to the principles of modularity, abstraction, stepwise decomposition, and information hiding, allowing the implementation of planned items for diagnosis and operational management. There are difficulties in setting communication-related protocols and applying them in the field due to the complexity of overseeing the entire system with data. Therefore, it is necessary to clarify the purpose of the system, and there are challenges in identifying the characteristics of individual facilities, such as pumps in pumping station, and fully incorporating them into the system process. Thus, the framework of the initial design is crucial for implementing a digital twin.

부분방전 신호의 비 선형적 해석 (A Nonlinear Analysis of Partial Discharge Signal)

  • 임윤석;장진강;김성홍;구자윤;김재환
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권3호
    • /
    • pp.169-176
    • /
    • 2000
  • The partial discharge(PD) signal, may seems to be stochastic and merely random, was investigated using the method to discern between chaos and random signal, e.g. correlation integral, Lyapunov characteristic exponents and etc. For the purpose of obtaining experimental data, partial discharge detecting system via computer aided acoustic sensor, detect PD signal from the insulating system, was used. While this method is very different from typical statistical analysis from the point of view of a nonlinear analysis, it can provide better interpretable criterion according to the time evolution with a degradation process in the same type insulating system.

  • PDF