• Title/Summary/Keyword: Sensor Data Process

Search Result 1,004, Processing Time 0.025 seconds

Evaluation of Spectral Band Adjustment Factor Applicability for Near Infrared Channel of Sentinel-2A Using Landsat-8 (Landsat-8을 활용한 Sentinel-2A Near Infrared 채널의 Spectral Band Adjustment Factor 적용성 평가)

  • Nayeon Kim;Noh-hun Seong;Daeseong Jung;Suyoung Sim;Jongho Woo;Sungwon Choi;Sungwoo Park;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.363-370
    • /
    • 2023
  • Various earth observation satellites need to provide accurate and high-quality data after launch. To maintain and enhance the quality of satellite data, it is crucial to employ a cross-calibration process that accounts for differences in sensor characteristics, such as the spectral band adjustment factor (SBAF). In this study, we utilized Landsat-8 and Sentinel-2A satellite imagery collected from desert sites in Libya4, Algeria3, and Mauritania2 among pseudo-invariant calibration sites to calculate and apply SBAF, thereby compensating the uncertainties arising from variations in bandwidths. We quantitatively compared the reflectance differences based on the similarity of bandwidths, including Blue, Green, Red, and both the near-infrared (NIR) narrow, and NIR bands of Sentinel-2A. Following the application of SBAF, significant results with reflectance differences of approximately 1% or less were observed for all bands except NIR. In the case of the Sentinel-2A NIR band, it exhibited a significantly larger bandwidth difference compared to the NIR narrow band. However, after applying SBAF, the reflectance difference fell within the acceptable error range (5%) of 1-2%. It indicates that SBAF can be applied even when there is a substantial difference in the bandwidths of the two sensors, particularly in situations where satellite utilization is limited. Therefore, it was determined that SBAF could be applied even when the bandwidth difference between the two sensors is large in a situation where satellite utilization is limited. It is expected to be helpful in research utilizing the quality and continuity of satellite data.

A Mobile Landmarks Guide : Outdoor Augmented Reality based on LOD and Contextual Device (모바일 랜드마크 가이드 : LOD와 문맥적 장치 기반의 실외 증강현실)

  • Zhao, Bi-Cheng;Rosli, Ahmad Nurzid;Jang, Chol-Hee;Lee, Kee-Sung;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.1-21
    • /
    • 2012
  • In recent years, mobile phone has experienced an extremely fast evolution. It is equipped with high-quality color displays, high resolution cameras, and real-time accelerated 3D graphics. In addition, some other features are includes GPS sensor and Digital Compass, etc. This evolution advent significantly helps the application developers to use the power of smart-phones, to create a rich environment that offers a wide range of services and exciting possibilities. To date mobile AR in outdoor research there are many popular location-based AR services, such Layar and Wikitude. These systems have big limitation the AR contents hardly overlaid on the real target. Another research is context-based AR services using image recognition and tracking. The AR contents are precisely overlaid on the real target. But the real-time performance is restricted by the retrieval time and hardly implement in large scale area. In our work, we exploit to combine advantages of location-based AR with context-based AR. The system can easily find out surrounding landmarks first and then do the recognition and tracking with them. The proposed system mainly consists of two major parts-landmark browsing module and annotation module. In landmark browsing module, user can view an augmented virtual information (information media), such as text, picture and video on their smart-phone viewfinder, when they pointing out their smart-phone to a certain building or landmark. For this, landmark recognition technique is applied in this work. SURF point-based features are used in the matching process due to their robustness. To ensure the image retrieval and matching processes is fast enough for real time tracking, we exploit the contextual device (GPS and digital compass) information. This is necessary to select the nearest and pointed orientation landmarks from the database. The queried image is only matched with this selected data. Therefore, the speed for matching will be significantly increased. Secondly is the annotation module. Instead of viewing only the augmented information media, user can create virtual annotation based on linked data. Having to know a full knowledge about the landmark, are not necessary required. They can simply look for the appropriate topic by searching it with a keyword in linked data. With this, it helps the system to find out target URI in order to generate correct AR contents. On the other hand, in order to recognize target landmarks, images of selected building or landmark are captured from different angle and distance. This procedure looks like a similar processing of building a connection between the real building and the virtual information existed in the Linked Open Data. In our experiments, search range in the database is reduced by clustering images into groups according to their coordinates. A Grid-base clustering method and user location information are used to restrict the retrieval range. Comparing the existed research using cluster and GPS information the retrieval time is around 70~80ms. Experiment results show our approach the retrieval time reduces to around 18~20ms in average. Therefore the totally processing time is reduced from 490~540ms to 438~480ms. The performance improvement will be more obvious when the database growing. It demonstrates the proposed system is efficient and robust in many cases.

An Intelligent Intrusion Detection Model Based on Support Vector Machines and the Classification Threshold Optimization for Considering the Asymmetric Error Cost (비대칭 오류비용을 고려한 분류기준값 최적화와 SVM에 기반한 지능형 침입탐지모형)

  • Lee, Hyeon-Uk;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.157-173
    • /
    • 2011
  • As the Internet use explodes recently, the malicious attacks and hacking for a system connected to network occur frequently. This means the fatal damage can be caused by these intrusions in the government agency, public office, and company operating various systems. For such reasons, there are growing interests and demand about the intrusion detection systems (IDS)-the security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. The intrusion detection models that have been applied in conventional IDS are generally designed by modeling the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. These kinds of intrusion detection models perform well under the normal situations. However, they show poor performance when they meet a new or unknown pattern of the network attacks. For this reason, several recent studies try to adopt various artificial intelligence techniques, which can proactively respond to the unknown threats. Especially, artificial neural networks (ANNs) have popularly been applied in the prior studies because of its superior prediction accuracy. However, ANNs have some intrinsic limitations such as the risk of overfitting, the requirement of the large sample size, and the lack of understanding the prediction process (i.e. black box theory). As a result, the most recent studies on IDS have started to adopt support vector machine (SVM), the classification technique that is more stable and powerful compared to ANNs. SVM is known as a relatively high predictive power and generalization capability. Under this background, this study proposes a novel intelligent intrusion detection model that uses SVM as the classification model in order to improve the predictive ability of IDS. Also, our model is designed to consider the asymmetric error cost by optimizing the classification threshold. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, when considering total cost of misclassification in IDS, it is more reasonable to assign heavier weights on FNE rather than FPE. Therefore, we designed our proposed intrusion detection model to optimize the classification threshold in order to minimize the total misclassification cost. In this case, conventional SVM cannot be applied because it is designed to generate discrete output (i.e. a class). To resolve this problem, we used the revised SVM technique proposed by Platt(2000), which is able to generate the probability estimate. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 1,000 samples from them by using random sampling method. In addition, the SVM model was compared with the logistic regression (LOGIT), decision trees (DT), and ANN to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell 4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on SVM outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that our model reduced the total misclassification cost compared to the ANN-based intrusion detection model. As a result, it is expected that the intrusion detection model proposed in this paper would not only enhance the performance of IDS, but also lead to better management of FNE.

Verification of Multi-point Displacement Response Measurement Algorithm Using Image Processing Technique (영상처리기법을 이용한 다중 변위응답 측정 알고리즘의 검증)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.297-307
    • /
    • 2010
  • Recently, maintenance engineering and technology for civil and building structures have begun to draw big attention and actually the number of structures that need to be evaluate on structural safety due to deterioration and performance degradation of structures are rapidly increasing. When stiffness is decreased because of deterioration of structures and member cracks, dynamic characteristics of structures would be changed. And it is important that the damaged areas and extent of the damage are correctly evaluated by analyzing dynamic characteristics from the actual behavior of a structure. In general, typical measurement instruments used for structure monitoring are dynamic instruments. Existing dynamic instruments are not easy to obtain reliable data when the cable connecting measurement sensors and device is long, and have uneconomical for 1 to 1 connection process between each sensor and instrument. Therefore, a method without attaching sensors to measure vibration at a long range is required. The representative applicable non-contact methods to measure the vibration of structures are laser doppler effect, a method using GPS, and image processing technique. The method using laser doppler effect shows relatively high accuracy but uneconomical while the method using GPS requires expensive equipment, and has its signal's own error and limited speed of sampling rate. But the method using image signal is simple and economical, and is proper to get vibration of inaccessible structures and dynamic characteristics. Image signals of camera instead of sensors had been recently used by many researchers. But the existing method, which records a point of a target attached on a structure and then measures vibration using image processing technique, could have relatively the limited objects of measurement. Therefore, this study conducted shaking table test and field load test to verify the validity of the method that can measure multi-point displacement responses of structures using image processing technique.