• Title/Summary/Keyword: Sensitivity Enhancement

Search Result 256, Processing Time 0.03 seconds

Sensitivity Enhancement of Spirometer Employing Ultrasonic Method

  • Han, Seung-Heon;Kim, Young-Kil
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.351-356
    • /
    • 2005
  • Respiration measurement method using an ultrasound sensor is influenced very little by an error of inertia and pressure. This device measures the amount and flow of respiration using a delivery speed difference of the ultrasound waves that are a return format by the pneumatic stream that is a flogging of ultrasound waves during transmission and receipt as having used a characteristic of ultrasound waves. This paper examines improving the sensor's sensitivity during transmission and receipt of the signal. Because the measurement must be performed on patients, clinicians need to be sure that it is accurately measuring even very weak breathing.

RF Plasma Processes Monitoring for Fluorocarbon Polluted Plasma Chamber Cleaning by Optical Emission Spectroscopy and Multivariate Analysis (Optical Emission Spectra 신호와 다변량분석기법을 통한 Fluorocarbon에 의해 오염된 반응기의 RF 플라즈마 세정공정 진단)

  • Jang, Hae-Gyu;Lee, Hak-Seung;Chae, Hui-Yeop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.242-243
    • /
    • 2015
  • Fault detection using optical emission spectra with modified K-means cluster analysis and principal component anal ysis are demonstrated for inductive coupl ed pl asma cl eaning processes. The optical emission spectra from optical emission spectroscopy (OES) are used for measurement. Furthermore, Principal component analysis and K-means cluster analysis algorithm is modified and applied to real-time detection and sensitivity enhancement for fluorocarbon cleaning processes. The proposed techniques show clear improvement of sensitivity and significant noise reduction when they are compared with single wavelength signals measured by OES. These techniques are expected to be applied to various plasma monitoring applications including fault detections as well as chamber cleaning endpoint detection.

  • PDF

Semiconductor Sensor for Detecting Freshness of Sea Foods (생선의 신선도 측정을 위한 반도체 센서)

  • Bak, Sung-Hyun;Kwon, Tae-Ha
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.4
    • /
    • pp.272-278
    • /
    • 1993
  • The trimethylamine-sensing characteristics of ZnO based thin film semiconductors and the sensitivity enhancement by squttering conditions have been investigated to develop a new type sensor for detecting fish freshness. The sensor fabricated with a 300nm of ZnO thin film with 4 wt% Al sub(2) O sub(3) and 1 wt% TiO sub(2) exhibited the highest sensitivity of 155 at 30$0^{\circ}C$ of working temperature and to the 240 ppm TMA gas. Deposition of ZnO thin film using a RF magnetron sputter was carried out at a pressure of 10 super(-2) Torr in pure oxygen gas with an RF power of 100W. The sensor exhibited a large response to the actual gases produced by a mackerel at an early stage of decomposition.

  • PDF

The Enhancement of Power System Security Using flexible AC Transmission Systems (FACTS) (FACTS 기기를 이용한 전력시스템의 안전도 향상)

  • 송성환;임정욱;문승일
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.3
    • /
    • pp.165-172
    • /
    • 2003
  • This paper presents an operation scheme to enhance the power system security by applying FACTS on Power systems. Three main generic types of FACTS devices are suggested an illustrated. Flow congestions over lines have been solved by controlling active power of series-compensated FACTS devices and low voltages at buses have been solved by controlling reactive power of shunt-compensated FACTS devices. Especially, Especially, UPFC has been applied in both line congestion and low voltages. Two kinds of indices which indicate the power system security level related to line flow and bus voltage are utilized in this paper. They have been minimized to enhance the power system security level through the iterative method and the sensitivity vector of security index is derived to determine the direction to minimum. The proposed algorithm has been tested on the IEEE 57-bus system with FACTS devices in a normal condition and a line-faulted contingency.

Plasma Impedance Monitoring with Real-time Cluster Analysis for RF Plasma Etching Endpoint Detection of Dielectric Layers

  • Jang, Hae-Gyu;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.123.2-123.2
    • /
    • 2013
  • Etching endpoint detection with plasma impedance monitoring (PIM) is demonstrated for small area dielectric layers inductive coupled plasma etching. The endpoint is determined by the impedance harmonic signals variation from the I-V monitoring system. Measuring plasma impedance has been examined as a relatively simple method of detecting variations in plasma and surface conditions without contamination at low cost. Cluster analysis algorithm is modified and applied to real-time endpoint detection for sensitivity enhancement in this work. For verification, the detected endpoint by PIM and real-time cluster analysis is compared with widely used optical emission spectroscopy (OES) signals. The proposed technique shows clear improvement of sensitivity with significant noise reduction when it is compared with OES signals. This technique is expected to be applied to various plasma monitoring applications including fault detections as well as end point detection.

  • PDF

Super Coupling Dual-gate Ion-Sensitive Field-Effect Transistors

  • Jang, Hyun-June;Cho, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.239-239
    • /
    • 2013
  • For more than four decades, ion-sensitive field-effect transistor (ISFET) sensors that respond to the change of surface potential on a membrane have been intensively investigated in the chemical, environmental, and biological spheres, because of their potential, in particular their compatibility with CMOS manufacturing technology. Here, we demonstrate a new type of ISFET with dual-gate (DG) structure fabricated on ultra-thin body (UTB), which highly boosts sensitivity, as well as enhancing chemical stability. The classic ion-sensitive field-effect transistor (ISFET) has been confronted with chronic problems; the Nernstian response, and detection limit with in the Debye length. The super-coupling effects imposed on the ultra thin film serve to not only maximize sensitivity of the DG ISFET, but also to strongly suppress its leakage currents, leading to a better chemical stability. This geometry will allow the ISFET based biosensor platform to continue enhancement into the next decade.

  • PDF

Fabrication of SnO2-TiO2-based Thick Films for Hydrocarbon Gas Sensors (탄화수소계 가스센서를 위한 SnO2-TiO2계 후막의 제조)

  • 정완영;박정은;강봉휘;이덕동
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.9
    • /
    • pp.721-729
    • /
    • 1991
  • SnO2-TiO2(Pt or Pd), as raw material for hydrocarbon gas sensors, was prepared by a coprecipitation method. The SnO2-TiO2-based thick film gas sensors were made by screen printing technique. The titanium dioxide synthesized was shown to be anatase structure from XRD peaks and was transformed to rutile structure between 700$^{\circ}C$ and 1000$^{\circ}C$. Titanium dioxide in SnO2-TiO2 thick films devices plays a very important role in the enhancement of the sensitivity to CH4 and C4H10. In the case of SnO2-TiO2(Pt) sensors, titanium dioxide that was rutile structure enhanced the sensitivity of the thick film to CH4. Platinum added to the raw powder at coprecipitation (as chloroplatinic acid VI hydrate) improved the gas sensitivity to hydrocarbon gases. Therefore, it is expected that the SnO2-TiO2(Pt) thick film sensors fabricated in this experiment could be put into practical use as LPG (primary component : C4H10 and C3H8) and LNG (primary component : CH4) sensors.

  • PDF

OPTIMAL SHAPE DESIGN OF A S-SHAPED SUBSONIC INTAKE USING NURBS (NURBS를 이용한 S형 천음속 흡입관 최적 설계)

  • Lee B.J.;Kim C.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.57-66
    • /
    • 2006
  • An optimal shape design approach is presented for a subsonic S-shaped intake using aerodynamic sensitivity analysis. Two-equation turbulence model is employed to capture strong counter vortices in the S-shaped duct more precisely. Sensitivity analysis is performed for the three-dimensional Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method For code validation, the result of the flow solver is compared with experiment data and other computational results of bench marking test. To study the influence oj turbulence models and grid refinement on the duct flow analysis, the results from several turbulence models are compared with one another and the minimum number of grid points, which can yield an accurate solution is investigated The adjoint variable code is validated by comparing the complex step derivative results. To realize a sufficient and flexible design space, NURBS equations are introduced as a geometric representation and a new grid modification technique, Least Square NURBS Grid Approximation is applied With the verified flow solver, the sensitivity analysis code and the geometric modification technique, the optimization of S-shaped intake is carried out and the enhancement of overall intake performance is achieved The designed S-shaped duct is tested in several off-design conditions to confirm the robustness of the current design approach. As a result, the capability and the efficiency of the present design tools are successfully demonstrated in three-dimensional highly turbulent internal flow design and off-design conditions.

Extreme Mooring Analysis of Turret Moored LNG-FSRU (터렛 계류된 LNG-FSRU의 극한 계류 해석)

  • Lee, Min-Kyeong;Jung, Kwang-Hyo;Park, Sung-Boo;Yu, Byeong-Seok;Chung, Yun-Suk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.435-446
    • /
    • 2016
  • In this study, hydrodynamic and mooring analysis for LNG FSRU moored by an internal turret with 9 mooring lines are numerically performed using commercial softwares, Hydrostar and Ariane. Met-ocean combinations for screening method are taken from wave governed condition(BV Rule Note NR 493) with relative heading between wave and wind between −45° and +45° and relative heading between wind and current between −30° and +30°. Extreme mooring analysis and sensitivity analysis are performed for intact and damaged (=one line missing) conditions and the parameters for sensitivity analysis are wave peak period, peak enhancement factor and line pretension. In the viewpoint of the design tension in mooring line, chain diameter is designed to satisfy safety factor for each conditions. As the chain diameter is increased from 152mm to 171mm, the designtension is reduced while the minimum breaking load is increased.

Seismic behavior enhancement of frame structure considering parameter sensitivity of self-centering braces

  • Xu, Longhe;Xie, Xingsi;Yan, Xintong;Li, Zhongxian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.45-56
    • /
    • 2019
  • A modified mechanical model of pre-pressed spring self-centering energy dissipation (PS-SCED) brace is proposed, and the hysteresis band is distinguished by the indication of relevant state variables. The MDOF frame system equipped with the braces is formulated in an incremental form of linear acceleration method. A multi-objective genetic algorithm (GA) based brace parameter optimization method is developed to obtain an optimal solution from the primary design scheme. Parameter sensitivities derived by the direct differentiation method are used to modify the change rate of parameters in the GA operator. A case study is conducted on a steel braced frame to illustrate the effect of brace parameters on node displacements, and validate the feasibility of the modified mechanical model. The optimization results and computational process information are compared among three cases of different strategies of parameter change as well. The accuracy is also verified by the calculation results of finite element model. This work can help the applications of PS-SCED brace optimization related to parameter sensitivity, and fulfill the systematic design procedure of PS-SCED brace-structure system with completed and prospective consequences.