• Title/Summary/Keyword: Sensing and Application

Search Result 1,526, Processing Time 0.028 seconds

Design of wireless sensor network and its application for structural health monitoring of cable-stayed bridge

  • Lin, H.R.;Chen, C.S.;Chen, P.Y.;Tsai, F.J.;Huang, J.D.;Li, J.F.;Lin, C.T.;Wu, W.J.
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.939-951
    • /
    • 2010
  • A low-cost wireless sensor network (WSN) solution with highly expandable super and simple nodes was developed. The super node was designed as a sensing unit as well as a receiving terminal with low energy consumption. The simple node was designed to serve as a cheaper alternative for large-scale deployment. A 12-bit ADC inputs and DAC outputs were reserved for sensor boards to ease the sensing integration. Vibration and thermal field tests of the Chi-Lu Bridge were conducted to evaluate the WSN's performance. Integral acceleration, temperature and tilt sensing modules were constructed to simplify the task of long-term environmental monitoring on this bridge, while a star topology was used to avoid collisions and reduce power consumption. We showed that, given sufficient power and additional power amplifier, the WSN can successfully be active for more than 7 days and satisfy the half bridge 120-meter transmission requirement. The time and frequency responses of cables shocked by external force and temperature variations around cables in one day were recorded and analyzed. Finally, guidelines on power characterization of the WSN platform and selection of acceleration sensors for structural health monitoring applications were given.

Quorum Quenching Bacteria Isolated from the Sludge of a Wastewater Treatment Plant and Their Application for Controlling Biofilm Formation

  • Kim, A-Leum;Park, Son-Young;Lee, Chi-Ho;Lee, Chung-Hak;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1574-1582
    • /
    • 2014
  • Bacteria recognize changes in their population density by sensing the concentration of signal molecules, N-acyl-homoserine lactones (AHLs). AHL-mediated quorum sensing (QS) plays a key role in biofilm formation, so the interference of QS, referred to as quorum quenching (QQ), has received a great deal of attention. A QQ strategy can be applied to membrane bioreactors (MBRs) for advanced wastewater treatment to control biofouling. To isolate QQ bacteria that can inhibit biofilm formation, we isolated diverse AHL-degrading bacteria from a laboratory-scale MBR and sludge from real wastewater treatment plants. A total of 225 AHL-degrading bacteria were isolated from the sludge sample by enrichment culture. Afipia sp., Acinetobacter sp. and Streptococcus sp. strains produced the intracellular QQ enzyme, whereas Pseudomonas sp., Micrococcus sp. and Staphylococcus sp. produced the extracellular QQ enzyme. In case of Microbacterium sp. and Rhodococcus sp., AHL-degrading activities were detected in the whole-cell assay and Rhodococcus sp. showed AHL-degrading activity in cell-free lysate as well. There has been no report for AHL-degrading capability in the case of Streptococcus sp. and Afipia sp. strains. Finally, inhibition of biofilm formation by isolated QQ bacteria or enzymes was observed on glass slides and 96-well microtiter plates using crystal violet staining. QQ strains or enzymes not only inhibited initial biofilm development but also reduced established biofilms.

Retrieval of Key Hydrological Parameters in the Yellow River Basin Using Remote Sensing Technique

  • Dong, Jiang;Jianhua, Wang;Xiaohuan, Yang;Naibin, Wang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.721-727
    • /
    • 2002
  • Precipitation evapotranspiration and runoff are three key parameters of regional water balance. Problems exist in the traditional methods for calculating such factors , such as explaining of the geographic rationality of spatial interpolating methods and lacking of enough observation stations in many important area for bad natural conditions. With the development of modern spatial info-techniques, new efficient shifts arose for traditional studies. Guided by theories on energy flow and materials exchange within Soil-Atmosphere-Plant Continuant (SPAC), retrieval models of key hydrological parameters were established in the Yellow River basin using CMS-5 and FengYun-2 meteorological satellite data. Precipitation and evapotranspiration were then estimated: (1) Estimating tile amount of solar energy that is absorbed by the ground with surface reflectivity, which is measured in the visible wavelength band (VIS): (2) Assessing the partitioning of the absorbed energy between sensible and latent heat with the surface temperature, which was measured in the thermal infrared band (TIR), the latent heat representing the evapotranspiration of water; (3) Clouds are identified and cloud top levels are classified using both VIS and TIR data. Hereafter precipitation will be calculated pixel by pixel with retrieval model. Daily results are first obtained, which are then processed to decade, monthly and yearly products. Precipitation model has been has been and tested with ground truth data; meanwhile, the evapotranspiration result has been verified with Large Aperture Scintillometry (LAS) presented by Wageningen University of the Netherlands. Further studies may concentrate on the application of models, i.e., establish a hydrological model of the Yellow river basin to make the accurate estimation of river volume and even monitor the whole hydrological progress.

  • PDF

A Field Experiment Study on the Use of OSMI Wave Bands for Agricultural Applications

  • Hong, Suk-Young;Rim, Sang-Kyu;Jung, Won-Kyo
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.307-319
    • /
    • 1999
  • The aim of this study is to assess the OSMI (Ocean Scanning Multi-spectral Imager), whose central bands are 443nm, 490nm, 510nm, 555nm, 670nm, and 865nm, for agricultural applications. Radiance measurements, used to determine per cent reflectance of canopies and soils, were acquired with spectro-radiometers (Li-1800;330∼1,100nm, GER-SFOV;350∼2,500nm, and MSR-7000; 300∼2,500nm) in situ for crops and indoors for soils. OSMI equivalent bands and their ratio values were prepared(20nm interval for bands 1∼5; 40nm interval for band 6) by averaging spectral reflectance values to the real OSMI bands and analyzed as to crop growth parameters, leaf area index (LAI), total dry matter, and growth index in crops and physiochemical properties in soils. Spectral variations for each growth stage in rice and for crop discrimination in upland crops were significant statistically. In soils, clay and water content, CEC (Cation Exchange Capacity), free iron oxide, and some cation content were correlated with the OSMI equivalent bands. The result of this study shows OSMI wave bands would be promising for agricultural application in terms of spectral information and resolution.

Experimental Study on Temperature Dependence of Nitrate Sensing using an ISE-based On-site Water Monitoring System

  • Jung, Dae-Hyun;Kim, Dong-Wook;Cho, Woo Jae;Kim, Hak-Jin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.122-122
    • /
    • 2017
  • Recently, environmental problems have become an area of growing interests. In-situ monitoring of water quality is fundamental to most environmental applications. The accurate measurement of nitrate concentrations is fundamental to understanding biogeochemistry in aquatic ecosystems. Several studies have reported that one of the most feasible methods to measure nitrate concentration is the use of Ion Selective-electrodes (ISEs). The ISE application to water monitoring has several advantages, such as direct measurement methodology, high sensitivity, wide measurement range, low cost, and portability. However, the ISE methods may yield inconsistent results where there was a difference in temperature between the calibration and measurement solutions, which is associated with the temperature dependence of ionic activity coefficients in solution. In this study, to investigate the potential of using the combination of a temperature sensor and nitrate ISEs for minimizing the effect of temperature on real-time nitrate sensing in natural water, a prototype of on-site water monitoring system was built, mainly consisting of a sensor chamber, an array of 3 ISEs, an waterproof temperature sensor, an automatic sampling system, and an arduino MCU board. The analog signals of ISEs were obtained using the second-order Sallen-key filter for performing voltage following, differential amplification, and low pass filtering. The performance test of the developed water nitrate sensing system was conducted in a monitoring station of drinking water located in Jeongseon, Kangwon. A temperature compensation method based on two-point normalization was proposed, which incorporated the determination of temperature coefficient values using regression equations relating solution temperature and electrode signal determined in our previous studies.

  • PDF

Application trend of unmanned aerial vehicle (UAV) image in agricultural sector: Review and proposal (농업분야 무인항공기 영상 활용 동향: 리뷰 및 제안)

  • Park, Jin-Ki;Das, Amrita;Park, Jong-Hwa
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.269-276
    • /
    • 2015
  • Unmanned Aerial Vehicle (UAV) has several advantages over conventional remote sensing techniques. They can acquire high-resolution images quickly and repeatedly. And with a comparatively lower flight altitude, they can obtain good quality images even in cloudy weather. In this paper, we discussed the state-of-the-art of the domestic and international use of UAV in agricultural sector as well as assessed its utilization and applicability for agricultural environment in Korea. Association of robotic, computer vision and geomatic technologies have established a new paradigm of low-altitude aerial remote sensing that has now been receiving attention from researchers all over the world. In a field study, it has been found that use of UAV imagery in an agricultural subsidy program can reduce the farmers' complain and provide objective evidence. UAV high resolution photography can also be helpful in monitoring the disposal zone for animal carcasses. Due to its expeditiousness and accuracy, UAV imagery can be a very useful tool to evaluate the damage in case of an agricultural disaster for both parties insurance companies and the farmers. Also high spatial and temporal resolution in UAV system can increase the prediction accuracy which in turn help to maintain the agricultural supply and demand chain.

Investigation of Passing Ships in Inaccessible Areas Using Satellite-based Automatic Identification System (S-AIS) Data

  • Hong, Dan-Bee;Yang, Chan-Su;Kim, Tae-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.579-590
    • /
    • 2018
  • Shipping of North Korea is not yet publicly well documented. Taedong River, the most important sea route of North Korea, is selected as a model study area to show how effectively a remote place can be investigated through the application of satellite-based Automatic Identification System (S-AIS) for understanding shipping and tracks of vessels which passed the lock gate in the Taedong River and visited the nearby ports on its track. S-AIS data of the year 2014 were analyzed on the basis of various time periods, country of registry and category of ships. A total of 325 vessels were observed. The ships under the flags of North Korea, Cambodia and Sierra Leone were found to be dominant in frequencies which accounted for 43.08%, 16.00%, and 8.92%, respectively. Trajectories of the 325 ships in the Yellow Sea were also checked according to the flags. It is concluded that some ships under the flags of Cambodia, Sierra Leone, Mongolia, Panama and Kiribati are regarded as flags of convenience, and ships without flag and ship type codes also comprised a remarkable portion out of the total ships.

Temporal and Spatial Variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function Analysis

  • Yoon, Hong-Joo;Byun, Hye-Kyung;Park , Kwang-Soon
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.213-219
    • /
    • 2005
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal ronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST. In the application of EOF analysis for SST, the variance of the 1st mode was 97.6%. Temporal components showed annual variations, and spatial components showed that where it is closer to continents, the SST variations are higher. Temporal components of the 2nd mode presented higher values of 1993, 94 and 95 than those of other years. Although these phenomena were not remarkable, they could be considered ELNI . NO effects to the Korean seas as the time was when ELNI . NO occurred. The Sobel Edge Detection Method (SEDM) delineated four fronts: the Subpolar Front (SPF) separating the northern and southern parts of the East Sea; the Kuroshio Front (KF) in the East China Sea, the South Sea Coastal Front (SSCF) in the South Sea, and the Tidal Front (TDF) in the West Sea. TF generally occurred over steep bathymetry slopes, and spatial components of the 1st mode in SST were bounded within these frontal areas. EOF analysis of SST gradient values revealed the temporal and spatial variations of the TF. The SPF and SSCF were most intense in March and October; the KF was most significant in March and May.

The Future of Quantum Information: Challenges and Vision

  • Kim, Dohyun;Kang, Jungho;Kim, Tae Woo;Pan, Yi;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.151-162
    • /
    • 2021
  • Quantum information has passed the theoretical research period and has entered the realization step for its application to the information and communications technology (ICT) sector. Currently, quantum information has the advantage of being safer and faster than conventional digital computers. Thus, a lot of research is being done. The amount of big data that one needs to deal with is expected to grow exponentially. It is also a new business model that can change the landscape of the existing computing. Just as the IT sector has faced many challenges in the past, we need to be prepared for change brought about by Quantum. We would like to look at studies on quantum communication, quantum sensing, and quantum computing based on quantum information and see the technology levels of each country and company. Based on this, we present the vision and challenge for quantum information in the future. Our work is significant since the time for first-time study challengers is reduced by discussing the fundamentals of quantum information and summarizing the current situation.

An Improved Remote Sensing Image Fusion Algorithm Based on IHS Transformation

  • Deng, Chao;Wang, Zhi-heng;Li, Xing-wang;Li, Hui-na;Cavalcante, Charles Casimiro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1633-1649
    • /
    • 2017
  • In remote sensing image processing, the traditional fusion algorithm is based on the Intensity-Hue-Saturation (IHS) transformation. This method does not take into account the texture or spectrum information, spatial resolution and statistical information of the photos adequately, which leads to spectrum distortion of the image. Although traditional solutions in such application combine manifold methods, the fusion procedure is rather complicated and not suitable for practical operation. In this paper, an improved IHS transformation fusion algorithm based on the local variance weighting scheme is proposed for remote sensing images. In our proposal, firstly, the local variance of the SPOT (which comes from French "Systeme Probatoire d'Observation dela Tarre" and means "earth observing system") image is calculated by using different sliding windows. The optimal window size is then selected with the images being normalized with the optimal window local variance. Secondly, the power exponent is chosen as the mapping function, and the local variance is used to obtain the weight of the I component and match SPOT images. Then we obtain the I' component with the weight, the I component and the matched SPOT images. Finally, the final fusion image is obtained by the inverse Intensity-Hue-Saturation transformation of the I', H and S components. The proposed algorithm has been tested and compared with some other image fusion methods well known in the literature. Simulation result indicates that the proposed algorithm could obtain a superior fused image based on quantitative fusion evaluation indices.