• Title/Summary/Keyword: Sensing

Search Result 12,061, Processing Time 0.043 seconds

Unlimited Cooperative Sensing with Energy Detection for Cognitive Radio

  • Bae, Sunghwan;Kim, Hongseok
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.172-182
    • /
    • 2014
  • In this paper, we investigate the fundamental performance limits of the cooperative sensing using energy detection by considering the unlimited number of sensing nodes. Although a lot of cognitive radio research so far proposed various uses of energy detection because of its simplicity, the performance limits of energy detection have not been studied when a large number of sensing nodes exist. First, we show that when the sensing nodes see the independent and identically distributed channel conditions, then as the number of sensing nodes N goes to infinity, the OR rule of hard decision achieves zero of false alarm Pf for any given target probability of detection $\bar{P_d}$ irrespective of the non-zero received primary user signal to noise ratio ${\gamma}$. Second, we show that under the same condition, when the AND rule of hard decision is used, there exists a lower bound of $P_f$. Interestingly, however, for given $\bar{P_d}$, $P_f$ goes to 1 as N goes to infinity. Third, we show that when the soft decision is used, there exists a way of achieving 100% utilization of secondary user, i.e., the sensing time overhead ratio goes to zero so does $P_f$.We verify our analyses by performing extensive simulations of the proposed unlimited cooperative sensing. Finally, we suggest a way of incorporating the unlimited cooperative sensing into a practical cellular system such as long term evolutionadvanced by exploiting the existing frame structure of absolute blank subframe to implement the in-band sensing.

A Fiber Optic Sensor for Determination of 2,4-Dichlorophenol Based on Oxygen Oxidation Catalyzed by Iron(III) Tetrasulfophthalocyanine

  • Tong, Yilin;Li, Dapeng;Huang, Jun;Zhang, Cong;Li, Kun;Ding, Liyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3307-3311
    • /
    • 2013
  • A new fiber optical sensor was developed for the determination of 2,4-dichlorophenol (DCP). The sensor was based on DCP oxidation by oxygen with the catalysis of iron(III) tetrasulfophthalocyanine (Fe(III)PcTs). The optical oxygen sensing film with $Ru(bpy)_3Cl_2$ as the fluorescence indicator was used to determine the consumption of oxygen in solution. A lock-in amplifier was used for detecting the lifetime of the oxygen sensing film by measuring the phase delay change of the sensor head. The different variables affecting the sensor performance were evaluated and optimized. Under the optimal conditions (i.e. pH 6.0, $25^{\circ}C$, Fe(III)PcTs concentration of 0.62 mg/mL), the linear detection range and response time of the sensor are $1.0{\times}10^{-6}-9.0{\times}10^{-6}$ mol/L and 250 s, respectively. The sensor displays high selectivity, good repeatability and stability, and can be used as an effective tool in analyzing DCP concentration in practical samples.

Fabrication of CuO/ZnO Nano-heterostructure by Photochemical Method and Their H2S Gas Sensing Properties

  • Kim, Jae-Hyun;Yong, Ki-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.359-359
    • /
    • 2011
  • This study reports the H2S gas sensing properties of CuO / ZnO nano-hetero structure bundle and the investigation of gas sensing mechanism. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and CuO / ZnO nano-heterostructures were prepared by photo chemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. In order to improve the H2S gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by photo-chemical deposition of CuO on the ZnO nanorods bundle. The furnace type gas sensing system was used to characterize sensing properties with diluted H2S gas (50 ppm) balanced air at various operating temperature up to 500$^{\circ}C$. The H2S gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. Photo-chemically fabricated CuO/ZnO heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with H2S gas.

  • PDF

ITO Extended Gate Reduced Graphene Oxide Field Effect Transistor For Proton Sensing Application

  • Truong, Thuy Kieu;Nguyen, T.N.T.;Trung, Tran Quang;Son, Il Yung;Kim, Duck Jin;Jung, Jin Heak;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.653-653
    • /
    • 2013
  • In this study, ITO extended gate reduced graphene oxide field effect transistor (rGO FET) was demonstrated as a transducer for a proton sensing application. In this structure, the sensing area is isolated from the active area of the device. Therefore, it is easy to deposit or modify the sensing area without affecting on the device performance. In this case, the ITO extended gate was used as a gate electrode as well as a proton sensing material. The proton sensing properties based on the rGO FET transducer were analyzed. The rGO FET device showed a high stability in the air ambient with a TTC encapsulation layer for months. The device showed an ambipolar characteristic with the Dirac point shift with varying the pH solutions. The sensing characteristics have offered the potential for the ion sensing application.

  • PDF

A Study on Spectrum Sensing for WRAN (WRAN을 위한 스펙트럼 센싱에 관한 연구)

  • Oh, Sang-Min;Lim, Jong-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.2
    • /
    • pp.132-138
    • /
    • 2008
  • Recently, many frequency sharing technology including CR (Cognitive Radio) technology have been studied actively because of frequency scarcity. For implementing CR systems, spectrum sensing technology plays key role. In IEEE 802.22 WRAN, the first standard aimed at Internet service in a TV channel with CR technology. This paper explained the various spectrum sensing schemes detecting narrowband ATSC signal in the IEEE 802.22 such as Energy detector, Spectral Correlation Sensing scheme, Covariance based Sensing algorithm and analyzed in terms of the probability of misdetection when the probability of false alarm is 10%. Based on simulation results, this paper proposed a duplex sensing scheme based on Energy detector and analyzed the capability of the proposed sensing scheme comparing with each sensing scheme.

  • PDF

THE PERFOMANCE OF GROUNDBASE MOBILE PLATFORM FOR C-BAND MICROWAVE SCATTEROMETER SYSTEM

  • Aziz H.;Mahmood N.N.;Ali A.;Jamil H.;Mahmood K.A.;Ahmad Z.;Ibrahim N.;Brevern P.V.;Chuah H.T.;Koo V.C.;Sing L.X.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.61-63
    • /
    • 2004
  • The procurement of a mobile microwave scatterometer platform involved the consideration to ensure a mobile platform and equipment selected full-filled technical requirement and safety standard in Malaysia. Designing, and modification works involved engineering methodology in determining and selecting a suitable hydraulic telescopic boom that suit a selected mobile platform available locally. The mobile platform is a delivery system for microwave remote sensing microwave scatterometer and other accessories to any locations in Malaysia. Total loading to be carried by the mobile platform is 4500 kg and its overall weight must be 16,000 kg as recommended by hydraulic telescopic boom manufacturers. The telescopic boom will elevate microwave scatterometer system including the antenna to a maximum height of 27 m, and can also be rotated through $3600^{\circ}$. A mechanism is incorporated in the system to enable tracking or monitoring angular movement of the hydraulic telescopic boom when positioned towards predetermined target.

  • PDF

Remote sensing and GIS technologies for route selection of 'West-East Nature Gas pipeline'

  • Zhu Xiaoge;Zhang Yaoyan;Zhang Yiming;Van Hu;Shihong Wang
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.28-30
    • /
    • 2004
  • The West-East Nature Gas Pipeline is a great project in China. Advanced remote sensing technology combined with GIS and GPS is used to select the favorable plan from various possible routes through interpreting the information of topographic landform, regional geology, disaster geology, traffic conditions and nature environment from remote sensing images. There are a lot of changes in geographical and environmental factors along such pipelines due to the rapid development in China. Image maps produced from new satellite data can identify these changes and be used successfully not only on route-selection studies but also on in situ investigation, together with GPS. Results from detail analysis provide necessary information and parameters for plan, design and construction of the pipeline and they are also the basic data for the pipeline database. The set of techniques has been applied on planning and designing several pipelines successfully.

  • PDF

A High-Voltage Current-Sensing Circuit for LED Driver IC (LED Driver IC를 위한 고전압 전류감지 회로 설계)

  • Min, Jun-Sik;No, Bo-Mi;Kim, Yeo-Jin;Kim, Yeong-Seuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.14-14
    • /
    • 2010
  • A high voltage current sensing circuit for LED driver IC is designed and verfied by Cadence SPECTRE simulations. The current mirror pair, power and sensing MOSFETs with size ratio of K, is used in our on-chip current sensing circuit. Very low drain voltages of the current mirror pair should be matched to give accurate current sensing, so a folded-cascode opamp with a PMOS input pair is used in our design. A high voltage high side LDMOST switch is used between the current sensing circuit and power MOSFET to protect the current sensing circuit from the high output voltage. Simulation results using 0.35um BCD process show that current sensing is accurate with properly frequency compensated opamp.

  • PDF

Informed Spectrum Discovery in Cognitive Radio Networks using Proactive Out-of-Band Sensing

  • Jembre, Yalew Zelalem;Choi, Young-June;Paul, Rajib;Pak, Wooguil;Li, Zhetao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2212-2230
    • /
    • 2014
  • Cognitive radio (CR) users, known as secondary users (SUs), should avoid interference with primary users (PUs) who own the licensed band, while trying to access it; when the licensed band is unused by the PUs. To detect PUs, spectrum sensing should be performed over in-band channels that are currently in use by SUs. If PUs return to access the band, SUs need to vacate it, disrupting the SUs' communication unless a non-utilized band is discovered. Obtaining a non-utilized band in a short period facilitate seamless communication for SUs and avoid interference on PUs by vacating from the channel immediately. Searching for a non-utilized band can be done through proactive out-of-band (OB) sensing. In this paper, we suggest a proactive OB sensing scheme that minimizes the time required to discover a non-utilized spectrum in order to continue communication. Although, the duration spent on OB sensing reduces the throughput of the CR networks that can be achieved on band being utilized, the lost throughput can be compensated in the new discovered band. We demonstrate that, the effect of our proposed scheme on the throughput owing to OB sensing is insignificant, while exhibiting a very short channel discovery time.

Monitoring Flood Disaster Using Remote Sensing Data

  • Chengcai, Zhang;Xiuwan, Chen;Gaolong, Zhu;Wenjiang, Zhang;Peng, Sun-Chun
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.280.2-286
    • /
    • 1998
  • Flood is the main natural disaster mostly in the world. It is a care problem to prevent flood disaster generally. The frequency of flood disaster is high and the distributing field is wide, the 50 percent population and 70 percent properties distribute at the threaten field of flood disaster in China. Flood disaster has caused a huge amount of economical losses and these losses have an increasing trend. Along with the development of reducing natural disaster action, it has become one of the most attentive problems for monitoring flood, preventing flood and forecasting flood efficiently. Remote sensing has the characteristics of large spatial observing areas, wide spectrum ranges, and imaging far away from the targets, imaging capabilities all weather. Spatial remote sensing information, which records the full, processes of the disaster's occurrence and development in real-time. It is a scientific basis for management, planning and decision-making. Through systemic analyzing the RS monitoring theory, based on compounding RS information, the technology and method of monitoring flood disaster are studied.

  • PDF