• Title/Summary/Keyword: Sensible and latent energy recovery system

Search Result 10, Processing Time 0.023 seconds

Performance Analysis of Sensible and Latent Energy Recovery System for Thermally Controlled Facilities (향온시설물에 대한 현열 및 잠열 에너지 회수시스템의 성능해석)

  • 박병규;김무근;김근오
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1057-1065
    • /
    • 2000
  • A sizing of sensible and latent energy recovery system with condensing heat exchanger is important to the design of a thermally controlled facilities. The transient system simulation program TRNSYS 14.2/IISiBat has been used to evaluate the energy consumptions of a thermally controlled facilities which consist of boiler, chiller and condensing heat exchanger, The boiler and chiller are selected based on the annual peak loads and controlled to maintain the setting temperature of $14~17^{\circ}C$. Simulation shows that the amount of sensible and latent energy recovered by heat exchanger is almost 20% of total heating load.

  • PDF

Performance Analysis of Sensible and Latent Energy Recovery System for Thermally Controlled Facility

  • Park, Byung-Kyu;Kim, Moo-Geun;Kim, Geun-Oh
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.4
    • /
    • pp.17-26
    • /
    • 2001
  • Simulation was conducted using TRNSYS to evaluate the thermal performance of a facility. This facility has a condensing-type heat exchanger which is able to recover the latent energy for the purpose of reducing the heating energy in winter. The boiler and chiller are selected based on the annual peak loads and controlled to maintain the facility at the set temperature of 14~$17^\circ{C}$. Supplied energy by the boiler and recovered energy by the heat exchanger were calculated as a function of number of pass through heat exchanger, kind of fuel and hot water velocity. Simulation results show that about 20% of the total heating load can be recovered by the heat exchanger and the amount of latent heat is increasing with the number of pass. This means that the efficiency of the waste energy recovery system can be increased by using a condensing-type heat exchanger rather than a traditional sensible heat exchanger.

  • PDF

An Evaluation on Energy Recovery Performance of the Ventilation System in Multi-Residential Building by Field Measurement (실험을 통한 공동주택 환기시스템의 실제 운전 시 전열교환성능 검토)

  • Choi, Younhee;Song, Doosam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.2
    • /
    • pp.68-73
    • /
    • 2017
  • Recently, energy recovery ventilators (ERVs) have been installed for energy saving in many multi-residential buildings in Korea. The performance of the heat exchanger of an ERV is analyzed in this study under specific indoor and outdoor conditions in a test-cell measurement. However, the performance of the heat exchanger varies according to the indoor and outdoor condition. In this study, the performance of energy recovery of the ventilation system was therefore analyzed in actual weather conditions using field measurement. Experiments were conducted under winter conditions in a multi-residential building for 20 days. Based on the measurement results, the characteristics of sensible heat and latent heat exchange rates were analyzed.

A Study on the Performance of Paper Heat Exchanger for Exhaust Heat Recovery (배기열 회수용 종이 열교환기의 성능에 관한 연구)

  • Yoo, Seong-Yeon;Chung, Min-Ho;Choi, Jae-Ho;Kwon, Hwa-Kil;Lee, Chun-Woo;Lee, Ki-Seong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.245-250
    • /
    • 2003
  • In order to control indoor air quality and save energy, it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery. The purpose of this research is to find the performance of paper heat exchanger for exhaust heat recovery, which exchanges latent heat as well as sensible heat. Experimental apparatus comprises heat exchanger model, constant temperature and humidity chamber, fan and measurement systems for temperature, pressure and flow rate. Thermal performance and pressure loss of the paper heat exchanger are measured and compared at various air velocities and outdoor conditions. Experimental results show that paper heat exchanger can recover $50{\sim}70%$ of the enthalpy difference between supply and exhaust air.

  • PDF

A Study on the Factors Affecting the Performance of Paper Heat Exchanger for Exhaust Heat Recovery (배기열 회수용 종이 열교환기의 성능에 영향을 미치는 인자에 관한 연구)

  • Chung Min-Ho;Yoo Seong-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.956-964
    • /
    • 2005
  • In order to control indoor air quality and save energy, it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery The purpose of this research is to find the factors affecting the performance of paper heat exchanger for exhaust heat recovery, which can be applied directly to the conventional ventilation unit, air-purifier, and air-conditioning system. In this study, thermal performance and pressure loss of the paper heat exchanger are measured and compared at various operating conditions. The effectiveness of sensible, latent and total heat at the face velocity of 0.75 m/s are $77\%,\;47\%\;and\;57\%$ in the cooling condition and $77\%,\;59\%,\;and\;\%$ in the heating condition, respectively. The effectiveness for sensible heat is only affected by velocity. On the other hand, the effectiveness for latent heat is affected. by temperature and relative humidity.

A Study on the Performance Prediction of Paper Heat Exchanger for Exhaust Heat Recovery (배기열 회수용 종이 열교환기의 성능예측에 관한 연구)

  • Yoon, Seong-Yeon;Kim, Jin-Hyuck;Chung, Min-Ho;Jie, Myoung-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.372-380
    • /
    • 2008
  • In order to control indoor air quality and save energy, it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery. Paper heat exchanger can recover $50{\sim}70%$ of the enthalpy difference between supply and exhaust air. The purpose of this research is to obtain the experimental correlations for the friction factor, heat transfer coefficient, mass transfer coefficient and permeance of paper heat exchanger, which can be used to predict the performance of the paper heat exchanger. Pressure drops at various velocities, and sensible and latent heat transfer rates at various dry-bulb temperatures, relative humidities and specific humidities are measured to derive experimental correlations. The results of prediction using correlations show fairly good agreement with the experimental data obtained in the actual operating conditions.

A System Development of Thermal Energy Storage at High Temperatures (고온 축열 시스템의 개발에 관한 연구)

  • Hong, Seong-Ahn;Park, Won-Hoon;Choe, Hyung-Joon
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 1988
  • Heat transfer phenomena in a high-temperature heat storage unit were investigated using molten salts. Carbonate salt, an equimolar mixture of $Li_2CO_3$ and $K_2CO_3$, which melts at $505^{\circ}C$ with a latent heat of 82 cal/g, was selected as the most promising latent heat storage material based on its low cost and excellent thermophysical properties at moderately high temperatures. It was also found that nitrate salts were good candidates of sensible heat storage materials. For the carbonate salt to be utilized commercially, however, several means of enhancing thermal recovery must be explored by promoting heat conduction through the solid salt formed during the heat discharge period. These would be achieved by the additions of aluminum screens and wool, and stainless fins. Finally, experimental results of moving boundary of phase change were well compared with predictied values obtained from the approximate solution.

  • PDF

A Study on the Performance Prediction of Paper Heat Exchanger for Exhaust Heat Recovery (배기열 회수용 종이 열교환기의 성능예측에 관한 연구)

  • Yoo, Seong-Yeon;Kim, Jin-Hyuck
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.294-299
    • /
    • 2005
  • In order to control indoor air quality and save energy. it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery. Paper heat exchanger can recover $50{\sim}70$ of the enthalpy difference between supply and exhaust air. The purpose of this research is to obtain the experimental correlations for the friction factor, heat transfer coefficient, mass transfer coefficient and permeance of paper heat exchanger, which can be used for the performance prediction of the paper heat exchanger. Pressure drop at various velocities and heat transfer rate at various dry-bulb temperatures, relative humidities, and specific humidities are measured to make experimental correlations. The results of prediction using correlations show fairly good agreement with experimental data.

  • PDF

A Study on the Heat Recovery from Boiler Exhaust Gas with Multi-stage Water-fluidized-bed Heat Exchanger (다단 물유동층 열교환기에 의한 보일러 배가스의 폐열 회수 성능에 관한 연구)

  • Kim, Dae-Gi;Park, Sang-Il;Kim, Han-Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1776-1783
    • /
    • 2001
  • Heat recovery from boiler exhaust gas with multi-stage water-fluidized-bed heat exchanger is analyzed in this study. The recovered energy here is not only sensible heat but also latent heat contained in the exhaust gas. In this system direct contact heat transfer occurs while exhaust gas passes through water bed and the thermal energy recovered this way is again delivered to the water circulating through heat exchanging pipes within the bed. Thus the thermal energy of exhaust gas can be recovered as a clean hot water. A computer program developed in this study can predict the heat transfer performance of the system. The results of experiments performed in this study agree well with the calculated ones. The heat and mass transfer coefficients can be fecund through these experiments. The performance increases as the number of stage increases. However at large number of stages the increasing rate becomes very low.

A study on the heat recovery Characteristics of double tube type heat recovery ventilation system by double pipe material (이중관 재질에 따른 이중관형 열회수 환기장치의 열회수 특성 연구)

  • Kim, Eun-Young;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.21-26
    • /
    • 2017
  • In this study, performance tests were conducted to investigate the applicability of a double-tube heat recovery ventilation system. Paper, aluminum, polymer, were investigated as materials for the inner tube using the same exhaust-air volume. In all cases, the temperature exchange efficiency of the aluminum tube was the highest, while the paper tube showed similar results to those of the polymer tube. This probably resulted from the differences in thermal conductivity and thicknesses of the materials. The humidity exchange efficiency was the highest for the paper tubes in all cases, while the aluminum tubes and polymer tubes showed similar results. The total heat exchange efficiency, which includes the values of humidity exchange and temperature exchange, was highest in the case of the paper tube, and the aluminum tube and the polymer tube showed similar results. In the case of the paper tube, sensible heat and latent heat exchange occur at the same time, and the coefficient of energy of the aluminum tube and polymer tube are large values, when to be compared with only applicably sensible heat exchange coefficient of the aluminum tube and the polymer tube of total heat exchange efficiency value. The results of this study could be applied to the design of a ventilation system.