• Title/Summary/Keyword: Semiempirical MO

Search Result 15, Processing Time 0.021 seconds

Quantitative Structure-Activity Relationship Study on Phenylcyclohexylamine (Phenylcyclohexylamine의 정량적 구조-작용 상관관계에 관한 연구)

  • Kim, Ja Hong;Sohn, Sung Ho;Yang, Kee Soo;Hong, Sung Wan
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.378-382
    • /
    • 1998
  • A Quantitative Structure-Activity Relationship of 1-phenylcyclohexyl amine(PCA) and dexoxadral as a receptor has been investigated using semiempirical PM3 MO and Hyper Chem calculation. A set of 19 analogues of PCA was chosen for the study using a selection procedure aimed at minimizing the interparameter correlations, while ensuring that the frontier orbital covered the maximum possible range of LogP. The results show that the FOS and LogP is a good structural parameter to predict the maximum electroshock effective dose ($MES\;ED_{50}$) and toxicity dose ($TD_{50}$) for PCA derivatives.

  • PDF

The Chemical Bond of Cu Atom in Layer and Chain for Y123 and Y124 Superconductors (Y123 초전도체 및 Y124 초전도체에서 층과 사슬에 존재하는 구리 원자의 화학결합)

  • Man Shick Son;U-Hyon Paek;Lee Kee-Hag
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.4
    • /
    • pp.477-484
    • /
    • 1992
  • Using semiempirical molecular orbital method, ASED-MO of extended Huckel Theory, we were investigated chemical bonds and electronic properties of Cu atom in a chain and a layer for Y123 and Y124 superconductors from VEP (valence electron population), DOS (density of state), and COOP (crystal orbital overlap population). In order to investigate environmental effects of Cu atom for Y123 and Y124 superconductors, we introduced charged cluster models with point charge and without point charge into our calculations. As a result of ASED-MO calculations, the Cu atom in the layer acts as electron acceptor and the Cu atom in the chain acts as electron donor for Y123 and Y124 superconductors. The oxidation state of Cu atom for Y123 and Y124 superconductors without point charge is higher in the chain than in the layer. The oxidation state of Cu atom in the layer for Y123 superconductor is higher than that in the layer for Y124 superconductor. The Cu atom in the layer and the chain for Y123 superconductor does not largely affect on the environmental effect. However, the Cu atom in the layer and the chain for Y124 superconductor does largely affect on it. Also, electron population and chemical bonding of Cu1-O4, Cu2-O4, and Cu1-Cu2 for Y123 superconductor are far different from Y124 superconductor.

  • PDF

Theoretical Studies on the Cationic Polymerization Mechanism of Oxetanes(II) ($BF_3$촉매하의 옥세탄 공중합에 관한 분자 궤도론적 연구)

  • Park, Jeong Hwan;Cho, Sung Dong;Park, Seong Kyu;Cheun, Young Gu
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.11-19
    • /
    • 1996
  • The cationic polymerization of energetic substituted oxetanes which have pendant energetic group such as azido and nitrato are investigated theoretically, using semiempirical HF/3-21G, MINDO/3, MNDO and AM1 method. The stereo- and electronic structure of binary molecular complex composed of energetic substituted oxetane and boron trifluoride can be explain by molecular orbital theory. The reactivity of propagation in the copolymerization of oxetanes can be presented by the positive charge on carbon(C2) atom of oxetane and energy level of the lowest unoccupied molecular orbital(LUMO) of propagating species of oxetanes. The reactivity ratios for copolymerization of oxetanes are a random copolymer-zation which is agree with MO calculated and experimental results. The relative equlibrium concentration of cyclic oxonium and open carbenium ions is found to be a major determinant of mechanism, owing to the rapid equilibrium of these cation forms and the expectation based on calculation that in the prepolymer propagation step, SN1 mechanism will be at least as fast as that for SN2 mechanism.

  • PDF

The Effect of ${\pi}$ Bonds on the Calculated Dipole Moments for Tetrahedral and Square Planar [M(Ⅱ)$O_2S_2$] Type Complexes [M(II) = Co(II), Ni(II), Cu(II) and Zn(II)] (사면체 및 사각형 [M(II)$O_2S_2$]형태 착물의 쌍극자 모멘트에 대한 ${\pi}$결합의 영향 [M(II) = Co(II), Ni(II), Cu(II) 및 Zn])

  • Sangwoon Ahn;Jin Ha Park;Chang Jin Choi
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.265-273
    • /
    • 1982
  • The effect of ${\pi}$ bonds on the calculated dipole moments for square planar and tetrahedral [M(II)$O_2S_2$]] type complexes has been investigated by two different approaches. One is the approximate molecular orbital method based on the assumption that the mixing coefficient CM of the valence basis sets for the central metal ion and the appropriate ligand orbitals is equal for all ${\sigma}$ and ${\pi}$ bonding molecular orbitals. The other is the more refined calculation based on the semiempirical LCAO-MO method. If ${\sigma}$ bonds only are assumed to be formed, the calculated dipole moments for square planar and tetrahedral complexes are lower than those of the experimental values. If the contribution of ${\pi}$ bonds to the calculated dipole moments are fully considered, the calculated dipole moments for both square planar and tetrahedral [M(II)$O_2S_2$]] type complexes are higher than the experimental values. However if ${\pi}$ bonds are assumed to be delocalzed, the calculated dipole moments for tetrahedral [M(II$O_2S_2$]] type complexes fall in the range of the experimental values, but those for square planar complexes deviate from the experimental values. These results suggest that [M(II)$O_2S_2$]] type complexes may have the tetrahedral structure in inert solvent solution. This structure is in agreement with the experimental one. The calculated dipole moments for tetrahedral [M(II)$O_2S_2$]] type complexes indicate that the contribution of ${\pi}$ bonds to the calculated dipole moments may not be neglected.

  • PDF

Theoretical Study on Observed Heat of Ligation for Iron(Ⅱ) and Nickel(Ⅱ) Octahedral Complexes (팔면체형 Fe(Ⅱ)와 Ni(Ⅱ)착물의 실측 리간드화열에 관한 이론적 연구)

  • Kim, Jung Sung;Choi, Jin Tae;Song, Young Dae;Cho, Tae Sub
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.141-149
    • /
    • 1999
  • The correlation was investigated between the observed heat of ligation and calculated quantum chemical quantities for octahedral $[M(H_2O)_{6-x}(NH_3)_x]^{2+} (M=Fe(II),\;Ni(II))$ complexes by EHMO(Extended Huckel Molecular Orbital) and ZINDO/1(Zerner's Intermediate Neglected of Differential Overlap)method. The net charge of $Fe^{2+}$ and $Ni^{2+}$ ion of octahedral $[M(H_2O)_{6-x}(NH_3)_x]^{2+}(M=Fe(II),\;Ni(II))$ complexes(x=O, 1, …, 6) decreased with substituting $NH_3$ for $H_2O$ molecules. It has found that a good correlation exists between the observed heat of ligation and the calculated quantum chemical quantities such as net charge of central atom, enthalpy of formation, and total dissociation energy. From this finding, we have obtained the following semiempirical linear equation ${\Delta}H_{obs}=-0.2858_{qFe}+0.8813(r=0.97),\;{\Delta}H_{obs}=-0.8981_{qNi}+1.7929(r=0.95),\;{\Delta}H_{obs}=-0.0031H_{f(Fe)}+0.5725(r=0.97),\;{\Delta}H_{obs}=-0.0095H_{f(Ni)}+0.9193(r=0.97),\;{\Delta}H_{obs}=0.0476E_{diss(Fe)}+0.6434(r=0.94),\;{\Delta}H_{obs}=0.1401E_{diss(Ni)}+1.1393(r=0.93)$.

  • PDF