• 제목/요약/키워드: Semiconductor sensor

검색결과 732건 처리시간 0.027초

Development of Capacitive Water Level Sensor System for Boiler (보일러용 정전용량형 수위센서 시스템 개발)

  • Lee, Young Tae;Kwon, Ik Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • 제20권3호
    • /
    • pp.103-107
    • /
    • 2021
  • In this paper, a capacitive water level sensor for boilers was developed. In order to accurately monitor the water level in a high-temperature boiler that generates a lot of precipitates, the occurrence of precipitates on the surface of the water level sensor should be small, and a sensor capable of measuring even if the sensor surface is somewhat contaminated is required. The capacitive water level sensor has a structure in which one of the two electrodes is insulated with Teflon coating, and the stainless steel package of the water level sensor is brought into contact with the water tank so that the entire water tank becomes another electrode of the water level sensor. A C-V converter that converts the capacitance change of the capacitive water level sensor into a voltage change was developed and integrated with the water level sensor to minimize noise. The performance of the developed capacitive water level sensor was evaluated through measurement.

A Study on Inertia Sensor System for Nano Electronic Device (나노전자소자로서의 관성센서 시스템에 관한 연구)

  • Lee, Jun-Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • 제8권4호
    • /
    • pp.21-24
    • /
    • 2009
  • We investigated a nanoscale inertia sensor based on telescoping carbon nanotubes, using classical molecular dynamics simulations. The position of the telescoping nanotubes is controlled by the centrifugal force exerted by the rotation platform, thus, position shifts are determined by the capacitance between carbon nanotubes and the electrode, and the operating frequency of the carbon nanotube oscillator. This measurement system, tracking oscillations of the carbon nanotube oscillator, can be used as the sensor for numerous types of devices, such as motion detectors, accelerometers and acoustic sensors.

  • PDF

Theoretical study of flow and heat transfer around silicon bridge in a flow sensor (유속 센서의 실리콘 브리지 주위의 유동 및 열전달 수치해석에 관한 연구)

  • Hwang, Ho-Yeong;Kim, Ho-Yeong;Jeong, Jin-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제20권4호
    • /
    • pp.1376-1384
    • /
    • 1996
  • Measuring the velocity of fluid flow, semiconductor flow sensors are widely used in the various fields of engineering and science such as the semiconductor manufacturing processes and electronic control engines for automobiles. In the near future, this type of sensors will replace present hot wire type sensors or other type flow sensor due to its low price, easy handling and small size. To develop the advanced semiconductor flow sensor, it is necessary to obtain characteristics of the flow and the heat transfer around the sensor in advance. In the present study, the theoretical analysis including mathematical modeling and numerical calculation to predict the characteristics of heat transfer and flow field around the sensor was carried out. The main parameters for optimum design of the flow sensor are the free stream velocity, the heat generation rate of silicon arm and the distance between arms. Effects of these parameters on flow and heat transfer around the sensor and the temperature difference between arms are examined.

Design Parameter Optimization for Hall Sensor Application

  • Park, Chang-Sung;Cha, Gi-Ho;Kang, Hyun-Soon;Song, Chang-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.86.3-86
    • /
    • 2001
  • Hall effect sensor using 7um, 1.7 ohm-cm or 10um, 3.5 ohm-cm Bipolar process was successfully developed. The Hall sensor consists of various patterns, such as regular shapes, rectangles, diamond, hexagon and cross shapes to optimize offset voltage and sensitivity for proper applications. In order to measure offset voltage in chip scale the Agilent company´s 4156C and Nano-Voltage Meter were used and the best structure in offset voltage was finally selected by using ceramic package. The patterns appear to be the quadri-rectangular patterns entirely and three-parallelogram patterns. The measured offset voltages were found to be about 173-365uV. Meanwhile, in ...

  • PDF

Humidity Dependence Removal Technology in Oxide Semiconductor Gas Sensors (산화물 반도체 가스 센서의 습도 의존성 제거 기술)

  • Jiho Park;Ji-Wook Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제37권4호
    • /
    • pp.347-357
    • /
    • 2024
  • Oxide semiconductor gas sensors are widely used for detecting toxic, explosive, and flammable gases due to their simple structure, cost-effectiveness, and potential integration into compact devices. However, their reliable gas detection is hindered by a longstanding issue known as humidity dependence, wherein the sensor resistance and gas response change significantly in the presence of moisture. This problem has persisted since the inception of oxide semiconductor gas sensors in the 1960s. This paper explores the root causes of humidity dependence in oxide semiconductor gas sensors and presents strategies to address this challenge. Mitigation strategies include functionalizing the gas-sensing material with noble metal/transition metal oxides and rare-earth/rare-earth oxides, as well as implementing a moisture barrier layer to prevent moisture diffusion into the gas-sensing film. Developing oxide semiconductor gas sensors immune to humidity dependence is expected to yield substantial socioeconomic benefits by enabling medical diagnosis, food quality assessment, environmental monitoring, and sensor network establishment.

Study on the Sensor Development for Liquid Contamination during Delivery (이송 중 액체오염 검출센서 개발에 관한 연구)

  • Jeong, Yi Ha;Kim, Byung Han;Hong, Joo-Pyo
    • Journal of the Semiconductor & Display Technology
    • /
    • 제15권2호
    • /
    • pp.70-73
    • /
    • 2016
  • Previously proposed contamination detecting sensor was revisited for the investigation of the liquid tendency. Experiments revealed different output voltages for several kinds of liquid input, but showed same values for various flow rates of each liquid. The transmittance of the liquid was measured, and it is well correlated with the voltages. Linearity in values and the compensation of the sensor to sensor deviation were tried to obtain. And, long term test was performed as attached at the manufacturing equipment in the field.

Power Enhanced Design of Robust Control Charts for Autocorrelated Processes : Application on Sensor Data in Semiconductor Manufacturing (검출력 향상된 자기상관 공정용 관리도의 강건 설계 : 반도체 공정설비 센서데이터 응용)

  • Lee, Hyun-Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • 제34권4호
    • /
    • pp.57-65
    • /
    • 2011
  • Monitoring auto correlated processes is prevalent in recent manufacturing environments. As a proactive control for manufacturing processes is emphasized especially in the semiconductor industry, it is natural to monitor real-time status of equipment through sensor rather than resultant output status of the processes. Equipment's sensor data show various forms of correlation features. Among them, considerable amount of sensor data, statistically autocorrelated, is well represented by Box-Jenkins autoregressive moving average (ARMA) model. In this paper, we present a design method of statistical process control (SPC) used for monitoring processes represented by the ARMA model. The proposed method shows benefits in the power of detecting process changes, and considers robustness to ARMA modeling errors simultaneously. We prove benefits through Monte carlo simulation-based investigations.

Semiconductor-Type MEMS Gas Sensor for Real-Time Environmental Monitoring Applications

  • Moon, Seung Eon;Choi, Nak-Jin;Lee, Hyung-Kun;Lee, Jaewoo;Yang, Woo Seok
    • ETRI Journal
    • /
    • 제35권4호
    • /
    • pp.617-624
    • /
    • 2013
  • Low power consuming and highly responsive semiconductor-type microelectromechanical systems (MEMS) gas sensors are fabricated for real-time environmental monitoring applications. This subsystem is developed using a gas sensor module, a Bluetooth module, and a personal digital assistant (PDA) phone. The gas sensor module consists of a $NO_2$ or CO gas sensor and signal processing chips. The MEMS gas sensor is composed of a microheater, a sensing electrode, and sensing material. Metal oxide nanopowder is drop-coated onto a substrate using a microheater and integrated into the gas sensor module. The change in resistance of the metal oxide nanopowder from exposure to oxidizing or deoxidizing gases is utilized as the principle mechanism of this gas sensor operation. The variation detected in the gas sensor module is transferred to the PDA phone by way of the Bluetooth module.

Development of Plastic Film Type Submersion Sensor (플라스틱 필름형 침수센서 개발)

  • Lee, Young Tae;Kwon, Ik Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • 제21권2호
    • /
    • pp.107-111
    • /
    • 2022
  • In this paper, a plastic film type submersion sensor capable of measuring submersion speed was developed. This submersion sensor is designed as a capacitive type, and it is a sensor that outputs the change in capacitance between the electrode of the submersion sensor and the grounded body as a voltage through a C-V(capacitance-voltage) converter. We developed an submersion sensor in which two electrodes of different lengths are connected in parallel to measure the submersion speed accurately by minimizing the influence of noise such as contamination. When both electrodes of the submersion sensor are exposed to water, the rate of change of water level suddenly increases, so the submersion speed is measured by measuring the time to this point. Since the difference in length between the two electrodes of the submersion sensor does not change in any case, it is possible to accurately measure the submersion speed.

Development of Eco-friendly Paper Glucose Sensor Using Printing Technology (인쇄 기술을 이용한 친환경 종이 혈당 센서 스트립 개발)

  • Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • 제19권4호
    • /
    • pp.116-120
    • /
    • 2020
  • In this paper, we developed an electrochemical glucose sensor strip using a paper substrate. The paper glucose sensor strip is eco-friendly because it uses paper as a substrate, and it has the advantage that it can be manufactured only with four printing, drying and cutting processes. The paper glucose sensor is significantly simplified by the production process than the conventional glucose sensors because the production of only four printing on the paper substrate. In this paper, eco-friendly tracing paper was used to develop a paper glucose sensor strip, and screen-printing technology was used to form a carbon/silver electrode, insulating layer and glucose oxidase(GOD) layer. The developed paper glucose sensor strip has a flat structure with a size of 30 × 4.6 ㎟, and blood injection is a type of direct contact with the exposed enzyme layer above the strip. In this paper, the performance of paper glucose sensor strips was evaluated by analyzing the cyclic voltammetry(CV) and chronoamperometry(CA) characteristics.