• Title/Summary/Keyword: Semiconductor chip

Search Result 651, Processing Time 0.027 seconds

Retiming for SoC Using Single-Phase Clocked Latches (싱글 페이즈 클락드 래치를 이용한 SoC 리타이밍)

  • Kim Moon-Su;Rim Chong-Suck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.1-9
    • /
    • 2006
  • In the System-on-Chip(SoC) design, the global wires are critical parts for the performance. Therefore, the global wires need to be pipelined using flip-flops or latches. Since the timing constraint of the latch is more flexible than it of the flip-flop, the latch-based design can provide a better solution for the clock period. Retiming is an optimizing technique which repositions memory elements in the circuits to reduce the clock period. Traditionally, retiming is used on gate-level netlist, but retiming for SoC is used on macro-level netlist. In this paper, we extend the previous work of retiming for SoC using flip-flops to retiming for SoC using single-phase clocked latches. In this paper we propose a MILP for retiming for SoC using single-phase clocked latches, and apply the fixpoint computation to solve it. Experimental results show that retiming for SoC using latches reduces the clock period of circuits by average 10 percent compared with retiming for SoC using flip-flops.

An MPEG-2 AAC Encoder Chip Design Operating under 70MIPS (70MIPS 이내에서 동작하는 MPEG-2 AAC 부호화 칩 설계)

  • Kang Hee-Chul;Park Ju-Sung;Jung Kab-Ju;Park Jong-In;Choi Byung-Gab;Kim Tae-Hoon;Kim Sung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.4 s.334
    • /
    • pp.61-68
    • /
    • 2005
  • A chip, which can fast encoder the audio data to AAC (Advanced Audio Coding) LC(Low Complexity) that is MPEG-2 audio standard, has been designed on the basis of a 32 bits DSP core and fabricated with 0.25um CMOS technology. At first, the various optimization methods for implementing the algerian are devised to reduce the memory size and calculation cycles. FFT(Fast Fourier Transform) hardware block is added to the DSP core to get the more reduction of the calculation cycles. The chips has the size of $7.20\times7.20 mm^2$ and about 830,000 equivalent gates, can carry out AAC encoding under 70MIPS(Million Instructions per Second).

New Model-based IP-Level Power Estimation Techniques for Digital Circuits (디지털 회로에서의 새로운 모델 기반 IP-Level 소모 전력 추정 기법)

  • Lee, Chang-Hee;Shin, Hyun-Chul;Kim, Kyung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.2 s.344
    • /
    • pp.42-50
    • /
    • 2006
  • Owing to the development of semiconductor processing technology, high density complex circuits can be integrated in a System-on-Chip (SoC). However, increasing energy consumption becomes one of the most important limiting factors. Power estimation at the early stage of design is essential, since design changes at lower levels may significantly lengthen the design period and increase the cost. In this paper, logic level circuits ire levelized and several levels are selected to build power model tables for efficient power estimation. The proposed techniques are applied to a set of ISCAS'85 benchmark circuits to illustrate their effectiveness. Experimental results show that significant improvement in estimation accuracy and slight improvement in efficiency are achieved when compared to those of a well-known existing method. The average estimation error has been reduced from $9.49\%\;to\;3.84\%$.

Measurement of Setup and Hold Time in a CMOS DFF for a Synchronizer (동기회로 설계를 위한 CMOS DFF의 준비시간과 유지시간 측정)

  • Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.8
    • /
    • pp.883-890
    • /
    • 2015
  • As the semiconductor processing technology has been developing, multiple cores or NoC(network on chip) can be contained in recent chips. GALS(globally asychronous locally synchronous) clocking scheme that has multi-clock domains with different frequencies or phase differences is widely used to solve power consumption and clock skew in a large chip with a single clock. A synchronizer is needed to avoid a synchronization problem between sender and receiver in GALS. In this paper, the setup and hold time of DFF required to design the synchronizer are measured using 180nm CMOS processing parameters depending on temperature, supply voltage, and the size of inverter in DFF. The simulation results based on the bisection method in HSPICE show that the setup and hold time are proportional to temperature, however they are inversely proportional to supply voltage, and negative values are measured for the hold time.

Design of an Active Inductor-Based T/R Switch in 0.13 μm CMOS Technology for 2.4 GHz RF Transceivers

  • Bhuiyan, Mohammad Arif Sobhan;Reaz, Mamun Bin Ibne;Badal, Md. Torikul Islam;Mukit, Md. Abdul;Kamal, Noorfazila
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.261-269
    • /
    • 2016
  • A high-performance transmit/receive (T/R) switch is essential for every radio-frequency (RF) device. This paper proposes a T/R switch that is designed in the CEDEC 0.13 μm complementary metal-oxide-semiconductor (CMOS) technology for 2.4 GHz ISM-band RF applications. The switch exhibits a 1 dB insertion loss, a 28.6 dB isolation, and a 35.8 dBm power-handling capacity in the transmit mode; meanwhile, for the 1.8 V/0 V control voltages, a 1.1 dB insertion loss and a 19.4 dB isolation were exhibited with an extremely-low power dissipation of 377.14 μW in the receive mode. Besides, the variations of the insertion loss and the isolation of the switch for a temperature change from - 25℃ to 125℃ are 0.019 dB and 0.095 dB, respectively. To obtain a lucrative performance, an active inductor-based resonant circuit, body floating, a transistor W/L optimization, and an isolated CMOS structure were adopted for the switch design. Further, due to the avoidance of bulky inductors and capacitors, a very small chip size of 0.0207 mm2 that is the lowest-ever reported chip area for this frequency band was achieved.

Characterization of the Soldering Interface in Power Modules by Peel Strength Measurement (벗김강도 측정법에 의한 파워 모듈의 솔더접합 특성 평가)

  • Kim, Nam-Kyun;Lee, Hee-Heung;Bahng, Wook;Seo, Kil-Soo;Kim, Eun-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1142-1149
    • /
    • 2003
  • The strength and characteristics of the soldering interface of the power semiconductor chip in a power module has been firstly surveyed by the peel strength measurement method. A power module is combined with several power chips which generally has 30∼400$\textrm{mm}^2$ chip area to allow several tens or bigger amps in current rating, so that the traditional methods for interface characterization like shear test could not be applied to high power module. In this study power diode modules were fabricated by using lead-tin solder with 10${\times}$10$\textrm{mm}^2$ or 7${\times}$7$\textrm{mm}^2$ soldering interface. The peel strengths of soldered interfaces were measured and then the microscopic investigation on the fractured surfaces were followed. The peel test indicated that the crack propagated either through the bulk of the soft lead-tin solder which has 55-60 kgf/cm peel strength or along the interface between the solder and the plated nickel layer which has much lower 22 kgf/cm strength. This study showed that the peel test would be a useful method to quantify the solderability as well as to recognize which is the worst interface or the softest material in a power module with a large soldering area.

ViP: A Practical Approach to Platform-based System Modeling Methodology

  • Um, Jun-Hyung;Hong, Sung-Pack;Kim, Young-Taek;Chung, Eui-Young;Choi, Kyu-Myung;Kong, Jeong-Taek;Eo, Soo-Kwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.89-101
    • /
    • 2005
  • Research on highly abstracted system modeling and simulation has received a great deal of attention as of the concept of platform based design is becoming ubiquitous. From a practical design point of view, such modeling and simulation must consider the following: (i) fast simulation speed and cycle accuracy, (ii) early availability for early stage software development, (iii) inter-operability with external tools for software development, and (iv) reusability of the models. Unfortunately, however, all of the previous works only partially addresses the requirements, due to the inherent conflicts among the requirements. The objective of this study is to develop a new system design methodology to effectively address the requirements mentioned above. We propose a new transaction-level system modeling methodology, called ViP (Virtual Platform). We propose a two-step approach in the ViP method. In phase 1, we create a ViP for early stage software development (before RTL freeze). The ViP created in this step provides high speed simulation, lower cycle accuracy with only minor modeling effort.(satisfying (ii)). In phase 2, we refine the ViP to increase the cycle accuracy for system performance analysis and software optimization (satisfying (i)). We also propose a systematic ViP modeling flow and unified interface scheme based on utilities developed for maximizing reusability and productivity (satisfying (ii) and (iv)) and finally, we demonstrate VChannel, a generic scheme to provide a connection between the ViP and the host-resident application software (satisfying (iii)). ViP had been applied to several System-on-a-chip (SoC) designs including mobile applications, enabling engineers to improve performance while reducing the software development time by 30% compared to traditional methods.

Improvement in Thermomechanical Reliability of Power Conversion Modules Using SiC Power Semiconductors: A Comparison of SiC and Si via FEM Simulation

  • Kim, Cheolgyu;Oh, Chulmin;Choi, Yunhwa;Jang, Kyung-Oun;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.21-30
    • /
    • 2018
  • Driven by the recent energy saving trend, conventional silicon based power conversion modules are being replaced by modules using silicon carbide. Previous papers have focused mainly on the electrical advantages of silicon carbide semiconductors that can be used to design switching devices with much lower losses than conventional silicon based devices. However, no systematic study of their thermomechanical reliability in power conversion modules using finite element method (FEM) simulation has been presented. In this paper, silicon and silicon carbide based power devices with three-phase switching were designed and compared from the viewpoint of thermomechanical reliability. The switching loss of power conversion module was measured by the switching loss evaluation system and measured switching loss data was used for the thermal FEM simulation. Temperature and stress/strain distributions were analyzed. Finally, a thermal fatigue simulation was conducted to analyze the creep phenomenon of the joining materials. It was shown that at the working frequency of 20 kHz, the maximum temperature and stress of the power conversion module with SiC chips were reduced by 56% and 47%, respectively, compared with Si chips. In addition, the creep equivalent strain of joining material in SiC chip was reduced by 53% after thermal cycle, compared with the joining material in Si chip.

A $0.18{\mu}m$ CMOS 3.2-Gb/s 4-PAM Serial Link Receiver Using Current Mode Signaling (Current Mode Signaling 방법을 이용한 $0.18{\mu}m$ CMOS 3.2-Gb/s 4-PAM Serial Link Receiver)

  • Lee, Jeong-Jun;Jeong, Ji-Kyung;Burm, Jin-Wook;Jeong, Young-Han
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.10
    • /
    • pp.79-85
    • /
    • 2009
  • The design of a 3.2 Gb/s serial link receiver in $0.18{\mu}m$ CMOS process is presented. The major factors limiting the performance of high-speed links are transmission channel bandwidth, timing uncertainty. The design uses a multi-level signaling(4-PAM) to overcome these problems. Moreover, to increase data bit-rate and lower BER, we designed this circuit by using a current mode amplifier, Current-mode Logic(CML) sampling latches. The 4-PAM receiver achieves 3.2 Gb/s and BER is less than $1.0\;{\times}\;10^{-12}$. The $0.5\;{\times}\;0.6\;mm^2$ chip consumes 49 mA at 3.2 Gb/s from a 1.8-V supply.

An Wideband GaN Low Noise Amplifier in a 3×3 mm2 Quad Flat Non-leaded Package

  • Park, Hyun-Woo;Ham, Sun-Jun;Lai, Ngoc-Duy-Hien;Kim, Nam-Yoon;Kim, Chang-Woo;Yoon, Sang-Woong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.301-306
    • /
    • 2015
  • An ultra-compact and wideband low noise amplifier (LNA) in a quad flat non-leaded (QFN) package is presented. The LNA monolithic microwave integrated circuit (MMIC) is implemented in a $0.25{\mu}m$ GaN IC technology on a Silicon Carbide (SiC) substrate provided by Triquint. A source degeneration inductor and a gate inductor are used to obtain the noise and input matching simultaneously. The resistive feedback and inductor peaking techniques are employed to achieve a wideband characteristic. The LNA chip is mounted in the $3{\times}3-mm^2$ QFN package and measured. The supply voltages for the first and second stages are 14 V and 7 V, respectively, and the total current is 70 mA. The highest gain is 13.5 dB around the mid-band, and -3 dB frequencies are observed at 0.7 and 12 GHz. Input and output return losses ($S_{11}$ and $S_{22}$) of less than -10 dB measure from 1 to 12 GHz; there is an absolute bandwidth of 11 GHz and a fractional bandwidth of 169%. Across the bandwidth, the noise figures (NFs) are between 3 and 5 dB, while the output-referred third-order intercept points (OIP3s) are between 26 and 28 dBm. The overall chip size with all bonding pads is $1.1{\times}0.9mm^2$. To the best of our knowledge, this LNA shows the best figure-of-merit (FoM) compared with other published GaN LNAs with the same gate length.