• Title/Summary/Keyword: Semiconductor Defect

Search Result 259, Processing Time 0.034 seconds

Nondestructive Measurement on Electrical Characteristics of Amorphous Silicon by Using the Laser Beam (레이저 빔을 이용한 비정질실리콘 전기적 특성의 비파괴 측정)

  • 박남천
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.36-39
    • /
    • 2000
  • A small electrical potential difference which appears on any solid body when subjected to illumination by a modulated light beam generated by laser is called photocharge voltage(PCV)[1,2]. This voltage is proportional to the induced change in the surface electrical charge and is capacitatively measured on various materials such as conductors, semiconductors, ceramics, dielectrics and biological objects. The amplitude of the detected signal depends on the type of material under investigation, and on the surface properties of the sample. In photocharge voltage spectroscopy measurements[3], the sample is illuminated by both a steady state monochromatic bias light and the pulsed laser. The monochromatic light is used to created a variation in the steady state population of trap levels in the surface and space charge region of semiconductor samples which does result in a change in the measured voltage. Using this technique the spatial variation of PCV can be utilized to evaluate the surface conditions of the sample and the variation of the PCV due to the monochromatic bias light are utilized to characterize the surface states. A qualitative analysis of the proposed measurement is present along with experimental results performed on amorphous silicon samples. The deposition temperature was varied in order to obtain samples with different structural, optical and electronic properties and measurements are related to the defect density in amorphous thin film.

  • PDF

Development of Protection Device for Voltage Unbalance Faults using Three-Phase Neutral Voltage (삼상 중성점 전압을 이용한 전압불평형 사고 방지용 보호장치 개발)

  • Kwak, D.K.;Kim, D.S.;Kim, J.H.;Kim, S.C.;Jung, W.S.;Son, J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.621-622
    • /
    • 2012
  • The thermal over-current relay or electronic motor protection relay is mostly used as the open-phase detection device of the three-phase motor or load. When the over-current or overheat of electric line is generated, it detects and operates circuit breaker, but there is the defect that the sensing speed is slow, the operation can be sometimes failed, and the precision is decreased. In order to improve these problems, this paper is proposed a new control circuit topology for open-phase protection using semiconductor devices. Therefore, the proposed open-phase protection device enhances the sensing speed and precision, and has the advantage of simple fitting in the three-phase motor control panel in the field, as it manufactures into small size and light weight.

  • PDF

The Cu-CMP's features regarding the additional volume of oxidizer (산화제 배합비에 따른 연마입자 크기와 Cu-CMP의 특성)

  • Kim, Tae-Wan;Lee, Woo-Sun;Choi, Gwon-Woo;Seo, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.20-23
    • /
    • 2004
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing(CMP) process was required for the global planarization of inter-metal dielectric(IMD) layer with free-defect. However, as the IMD layer gets thinner, micro-scratches are becoming as major defects. Chemical-Mechanical polishing(CMP) of conductors is a key process in Damascene patterning of advanced interconnect structure. The effect of alternative commercial slurries pads, and post-CMP cleaning alternatives are discuss, with removal rate, scratch dentisty, surface roughness, dishing, erosion and particulate density used as performance metrics. Electroplated copper deposition is a mature process from a historical point of view, but a very young process from a CMP perspective. While copper electro deposition has been used and studied for decades, its application to Cu damascene wafer processing is only now gaining complete acceptance in the semiconductor industry. The polishing mechanism of Cu-CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. however it is important to understand the effect of oxidizer on copper passivation layer in order to obtain higher removal rate and non-uniformity during Cu-CMP process. In this paper, we investigated the effects of oxidizer on Cu-CMP process regarding the additional volume of oxidizer.

  • PDF

Mg Delta-Doping Effect on a Deep Hole Center Related to Electrical Activation of a p-Type GaN Thin Film

  • Park, Hyo-Yeol;Jeon, Kyoung-Nam;Kim, Keun-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.37-41
    • /
    • 2010
  • The authors investigated the photoluminescence (PL) and the electron paramagnetic resonance (EPR) from an magnesium (Mg)-doped GaN thin film with a delta-doped layer. The regularly doped sample shows a PL peak at 2.776 eV for the as-grown sample, and the peak shifts to 2.904 eV and increases in intensity for the annealed sample. The delta-doped sample also shows the same PL peak as does the regularly doped sample. However, only the annealed delta-doped layer shows a sharp EPR with a small isotropic Lande g-factor, $g_{II}$, of 2.029. This resonance is attributed to the delta-doped layer, which forms a hole-bound Mg-N atomic structure instead of the $Mg_{Ga}-V_N$ defect complex, indicating that the delta-doped sample was not optically activated to form PL centers but was instead electrically activated to form a hole-bound state.

Nonstoichiometry of the Terbium Oxide

  • Yo Chul Hyun;Ryu Kwang Sun;Lee, Eun Seok;Kim Keu Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.33-36
    • /
    • 1994
  • The x values of nonstoichiometric chemical formula, $Tb_4O_{7-{\delta}}\;or\;TbO_{1.5+x}$, have been determined in temperature range from 600$^{\circ}$C to 1000$^{\circ}$C under oxygen partial pressure of 2 ${\times}$ 10$^{-1}$ to 1 ${\times}$ 10$^{-5}$ atm by using quartz microbalance. The x values varied from 0.0478 to 0.1964 in the above conditions. The enthalpy of formation for x' in TbO$_{1.5+(0.25-xo-x')}$, ${\delta}H_f$, was 4.93-3.40 kcal mol$^{-1}$ and the oxygen partial pressure dependence was -1/8.80∼-1/11.8 under these conditions. The electrical conductivity of the $TbO_{1.5+x}$ was measured under the same conditions and the values varied from about 10$^{-3}$ to 10$^{-6}\;{\Omega}^{-1}cm^{-1}$ within semiconductor range. The activation energies for the conduction increase with oxygen partial pressure from 0.83 to 0.89 eV under the above conditions. The l/n values obtained from the oxygen pressure dependence of the conductivity are 1/4.4-1/5.2. The conduction mechanism, defect structure, and other physical properties of the oxides are dicussed with the x values, the electrical conductivity values, and the thermodynamic data.

Research Trend of Quantum Light Source for Quantum Information Technology (양자 정보 기술을 위한 양자 광원 연구 동향)

  • Ko, Y.H.;Kim, K.J.;Choi, B.S.;Han, W.S.;Youn, C.J.;Ju, J.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.99-112
    • /
    • 2019
  • A quantum light source is an essential element for quantum information technology, including quantum communication, quantum sensor, and quantum computer. Quantum light sources including photon number state, entangled state, and squeezed state can be divided into two types according to the generation mechanism, namely single emitter and non-linear based systems. The single emitter platform contains atom/ion trap, solid-state defect/color center, two-dimensional material, and semiconductor quantum dot, which can emit deterministic photons. The non-linear based platform contains spontaneous parametric down-conversion and spontaneous four-wave mixing, which can emit probabilistic photon pairs. For each platform, we give an overview of the recent research trends of the generation, manipulation, and integration of single photon and entangled photon sources. The characteristics of quantum light sources are investigated for each platform. In addition, we briefly introduce quantum sensing, quantum communication, and quantum computing applications based on quantum light sources. We discuss the challenges and prospects of quantum light sources for quantum information technology.

Density control of ZnO nanorod arrays using ultrathin seed layer by atomic layer deposition

  • Shin, Seokyoon;Park, Joohyun;Lee, Juhyun;Choi, Hyeongsu;Park, Hyunwoo;Bang, Minwook;Lim, Kyungpil;Kim, Hyunjun;Jeon, Hyeongtag
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.401-406
    • /
    • 2018
  • We investigated the effect of ZnO seed layer thickness on the density of ZnO nanorod arrays. ZnO has been deposited using two distinct processes consisting of the seed layer deposition using ALD and subsequent hydrothermal ZnO growth. Due to the coexistence of the growth and dissociation during ZnO hydrothermal growth process on the seed layer, the thickness of seed layer plays a critical role in determining the nanorod growth and morphology. The optimized thickness resulted in the regular ZnO nanorod growth. Moreover, the introduction of ALD to form the seed layer facilitates the growth of the nanorods on ultrathin seed layer and enables the densification of nanorods with a narrow change in the seed layer thickness. This study demonstrates that ALD technique can produce densely packed, virtually defect-free, and highly uniform seed layers and two distinctive processes may form ZnO as the final product via the initial nucleation step consisting of the reaction between $Zn^{2+}$ ions from respective zinc precursors and $OH^-$ ions from $H_2O$.

Implementation of an Intelligent Video Detection System using Deep Learning in the Manufacturing Process of Tungsten Hexafluoride (딥러닝을 이용한 육불화텅스텐(WF6) 제조 공정의 지능형 영상 감지 시스템 구현)

  • Son, Seung-Yong;Kim, Young Mok;Choi, Doo-Hyun
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.719-726
    • /
    • 2021
  • Through the process of chemical vapor deposition, Tungsten Hexafluoride (WF6) is widely used by the semiconductor industry to form tungsten films. Tungsten Hexafluoride (WF6) is produced through manufacturing processes such as pulverization, wet smelting, calcination and reduction of tungsten ores. The manufacturing process of Tungsten Hexafluoride (WF6) is required thorough quality control to improve productivity. In this paper, a real-time detection system for oxidation defects that occur in the manufacturing process of Tungsten Hexafluoride (WF6) is proposed. The proposed system is implemented by applying YOLOv5 based on Convolutional Neural Network (CNN); it is expected to enable more stable management than existing management, which relies on skilled workers. The implementation method of the proposed system and the results of performance comparison are presented to prove the feasibility of the method for improving the efficiency of the WF6 manufacturing process in this paper. The proposed system applying YOLOv5s, which is the most suitable material in the actual production environment, demonstrates high accuracy (mAP@0.5 99.4 %) and real-time detection speed (FPS 46).

Fabrication and Evaluation of Spectroscopic Grade Quasi-hemispherical CdZnTe Detector

  • Beomjun Park;Kyungeun Jung;Changsoo Kim
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.2
    • /
    • pp.85-90
    • /
    • 2024
  • Background: This study focuses on the fabrication and characterization of quasi-hemispherical Cd0.9Zn0.1Te (CZT) detector for gamma-ray spectroscopy applications, aiming to contribute to advancements in radiation measurement and research. Materials and Methods: A CZT ingot was grown using the vertical Bridgman technique, followed by proper fabrication processes including wafering, polishing, chemical etching, electrode deposition, and passivation. Response properties were evaluated under various external bias voltages using gamma-ray sources such as Co-57, Ba-133, and Cs-137. Results and Discussion: The fabricated quasi-hemispherical CZT detector demonstrated sufficient response properties across a wide range of gamma-ray energies, with sufficient energy resolution and peak distinguishability. Higher external bias voltages led to improved performance in terms of energy resolution and peak shape. However, further improvements in defect properties are necessary to enhance detector performance under low bias conditions. Conclusion: This study underscores the efficacy of quasi-hemispherical CZT detector for gamma-ray spectroscopy, providing valuable insights for enhancing their capabilities in radiation research field.