• Title/Summary/Keyword: Semi-dynamic data

Search Result 78, Processing Time 0.025 seconds

Characteristics and Dynamic Modeling of MR Damper for Semi-active Vibration Control (준능동 진동 제어를 위한 MR 감쇠기의 동적 모델링을 통한 특성분석)

  • Heo, Gwang-Hee;Jeon, Seung-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.61-69
    • /
    • 2013
  • This research is aimed to evaluate characteristics and dynamic modeling of MR damper for semi-active vibration control. A MR damper of semi-active type was designed and made for the purpose of controlling the vibration of a real-size model structure. Usually a semi-active control system equipped with a MR damper requires a dynamic model which expresses numerical data about the damping capacity and dynamic characteristics generated by a MR damper. To fulfil the requirement, a Power model and a Bingham model were particularly employed among many dynamic models of MR damper. Those models being contrasted with other ones, a dynamic test was carried out on the developed MR damper. In the test, excitation frequencies were conditioned to be 0.15 Hz, 1.0 Hz, and 2.0 Hz, and three different currents were adopted for each frequency. From these test results, it was found that displacement affected control capacity of the MR damper. The test results led to the identification of model variables for each dynamic model, on the basis of which a force-speed relation curve and expected damping force were derived and contrasted to those of the developed MR damper. Therefore, it was proven that the MR damper designed and made in this research was effective as a semi-active controller, and also that displacement of 2mm at minimum was found to be secured for vibration control, through the test using various displacements.

A Study on the Verification of Dynamic Properities on the basis of Vibration Criteria of Isolation Pad (제진대(Isolation Pad)의 진동허용규제치에 기준한 동특성(動特性) 규명에 관한 연구)

  • 백재호;이홍기;서항석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.869-874
    • /
    • 2001
  • In order that precision equipment using high precision industrial operate normally. vibration criteria of expected area that equipment be set up is micrometer level. that method is a trust design for apply to in field, when there attend to quantifiable method. Hence, semi -empirical method that using on the basis of experimental data about undefined information (properities of vibration source, dynamic properities of structure, etc.,) for prediction of vibration response make the use of dynamic structure design of semiconductor & TFT-LCD in the inside and outside country. Like this, for doing an optimal design of dynamic about structure, it is best important to get trust data that apply to semi-empirical method that is method of prediction vibration level. In this paper, on the basis of experimental data which was offered by a manufacturing company Of precisin equipment that plan to set up in semiconductor factory, we predicted vibration response on expected area that equipment be set up.

  • PDF

Road-friendliness of Fuzzy Hybrid Control Strategy Based on Hardware-in-the-Loop Simulations

  • Yan, Tian Yi;Li, Qiang;Ren, Kun Ru;Wang, Yu Lin;Zhang, Lu Zou
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.148-154
    • /
    • 2012
  • Purpose: In order to improve road-friendliness of heavy vehicles, a fuzzy hybrid control strategy consisting of a hybrid control strategy and a fuzzy logic control module is proposed. The performance of the proposed strategy should be effectively evaluated using a hardware-in-the-loop (HIL) simulation model of a semi-active suspension system based on the fuzzy hybrid control strategy prior to real vehicle implementations. Methods: A hardware-in-the-loop (HIL) simulation system was synthesized by utilizing a self-developed electronic control unit (ECU), a PCI-1711 multi-functional data acquisition board as well as the previously developed quarter-car simulation model. Road-friendliness of a semi-active suspension system controlled by the proposed control strategy was simulated via the HIL system using Dynamic Load Coefficient (DLC) and Dynamic Load Stress Factor (DLSF) criteria. Results: Compared to a passive suspension, a semi-active suspension system based on the fuzzy hybrid control strategy reduced the DLC and DLSF values. Conclusions: The proposed control strategy of semi-active suspension systems can be employed to improve road-friendliness of road vehicles.

Techniques for Efficient Reading of Semi-Passive Sensor Tag Data (반수동형 센서 태그 데이터의 효율적인 읽기 기법)

  • Kim, Soo-Han;Ryu, Woo-Seok;Hong, Bong-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.3
    • /
    • pp.34-41
    • /
    • 2009
  • This paper investigates the issue of efficient reading for sensor data of semi-passive sensor tag. The Cold Chain management system requires complete sensor data without data loss and the short processing time of reading sensor tag data. However, reading the sensed data could be interfered by RF environment such as a jamming, obstacle and so on. This study found that it could lead to loss of the sensed data and takes much time to read it when data loss is occurred. To solve this problem, we propose the transaction processing mechanism that guarantees efficient reading of the sensed data. To do this, we present the technique of dynamic packet size and technique of data recovery to execute read transaction. These techniques improve the reliability of reading operation as well as speed up of read process for the large capacity data. This paper contributes to the improvement of efficient reading of sensed data without any loss of data and large time required.

Big data analysis via computer and semi numerical simulations for dynamic responses of complex nanosystems

  • Allam, Maalla;Xiaoping, Huang;Hongkai, Zhou
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.599-617
    • /
    • 2022
  • In the present research, for the first time, the vibrational as well as buckling characteristics of a three-layered curved nanobeam including a core made of functionally graded (FG) material and two layers of smart material-piezo-magneto-electric-resting on a Winkler Pasternak elastic foundation are examined. The displacement field for the nanobeam is chosen via Timoshenko beam theory. Also, the size dependency is taken into account by using nonlocal strain gradient theory, aka NSGT. Then, by employing Hamilton's principle, energy procedure, the governing equations together with the boundary conditions are achieved. The solution procedure is a numerical solution called generalized differential quadrature method, or GDQM. The accuracy and reliability of the formulation alongside solution method is examined by using other published articles. Lastly, the parameter which can alter and affect the buckling or vocational behavior of the curved nanobeam is investigated in details.

Semi-supervised Cross-media Feature Learning via Efficient L2,q Norm

  • Zong, Zhikai;Han, Aili;Gong, Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1403-1417
    • /
    • 2019
  • With the rapid growth of multimedia data, research on cross-media feature learning has significance in many applications, such as multimedia search and recommendation. Existing methods are sensitive to noise and edge information in multimedia data. In this paper, we propose a semi-supervised method for cross-media feature learning by means of $L_{2,q}$ norm to improve the performance of cross-media retrieval, which is more robust and efficient than the previous ones. In our method, noise and edge information have less effect on the results of cross-media retrieval and the dynamic patch information of multimedia data is employed to increase the accuracy of cross-media retrieval. Our method can reduce the interference of noise and edge information and achieve fast convergence. Extensive experiments on the XMedia dataset illustrate that our method has better performance than the state-of-the-art methods.

Rheological Behavior of Viscoelastic Semi-Solid Ointment Base (Vaseline) in Oscillatory Shear Flow Fields (진동전단유동장에서 점탄성 반고형 연고기제(바셀린)의 레올로지 거동)

  • Song, Ki-Won;Chang, Gap-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Using a Rheometries Dynamic Analyzer (RDA II), the dynamic viscoelastic properties of a semi-solid ointment base (vaseline) in large amplitude oscillatory shear flow fields were measured over a temperature range of $25{\sim}45^{\circ}C$ and the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a wide range of angular frequencies. In this article, the nonlinear viscoelastic behavior was reported from the experimentally obtained data and the effect of temperature on this behavior was discussed in detail. In addition, the angular frequency and temperature dependencies of a linear viscoelastic behavior were explained. Finally, the applicability of a time-temperature superposition principle originally developed for polymeric materials was examined using a shift factor. Main results obtained from this study can be summarized as follows : (1) At very small strain amplitude region, vaseline shows a linear viscoelastic behavior independent of the imposed deformation magnitudes. Above a critical strain amplitude $({\gamma}_{0}=0.1{\sim}0.2%)$, however, vaseline exhibits a nonlinear viscoelastic behavior ; indicating that both the storage modulus and dynamic viscosity are sharply decreased with increasing deformation magnitude. (2) In large amplitude oscillatory shear flow fields, an elastic behavior (storage modulus) has a stronger strain amplitude dependence and begins to show a nonlinear behavior at a smaller strain amplitude region than does a viscous behavior (dynamic viscosity). (3) In small amplitude oscillatory shear flow fields, the storage modulus as well as the loss modulus are continuously increased as an increase in angular frequency and an elastic nature is always superior to a viscous behavior over a wide range of angular frequencies. (4) A time-temperature superposition principle can successfully be applicable to vaseline. This finding allows us to estimate the dynamic viscoelastic behavior of vaseline over an extraordinarily extended range (11 decades) of angular frequencies inaccessible from the experimentally measured range (4 decades).

A PROPOSAL OF SEMI-AUTOMATIC INDEXING ALGORITHM FOR MULTI-MEDIA DATABASE WITH USERS' SENSIBILITY

  • Mitsuishi, Takashi;Sasaki, Jun;Funyu, Yutaka
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.120-125
    • /
    • 2000
  • We propose a semi-automatic and dynamic indexing algorithm for multi-media database(e.g. movie files, audio files), which are difficult to create indexes expressing their emotional or abstract contents, according to user's sensitivity by using user's histories of access to database. In this algorithm, we simply categorize data at first, create a vector space of each user's interest(user model) from the history of which categories the data belong to, and create vector space of each data(title model) from the history of which users the data had been accessed from. By continuing the above method, we could create suitable indexes, which show emotional content of each data. In this paper, we define the recurrence formulas based on the proposed algorithm. We also show the effectiveness of the algorithm by simulation result.

  • PDF

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes

  • He, Tao
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.423-448
    • /
    • 2015
  • In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.

Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part I: Model-I

  • Pham, Thanh Dam;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.980-992
    • /
    • 2019
  • This paper describes a model test and numerical simulation of a 750-kW-semi-submersible platform wind turbine under several wind and wave conditions for validation of the numerical simulation model. The semi-submersible platform was designed to support the 750-kW-wind turbine class and operate at a water depth of 50 m. The model tests were performed to estimate the performance characteristics of the wind turbine system in the wide tank of the University of Ulsan. Motions and loads of the wind turbine system under the wind and wave conditions were measured and analyzed. The NREL-FAST code was used to simulate the wind turbine system, and the results were compared with those of the test model. The results demonstrate that the numerical simulation captures noticeably the fully coupled floating wind turbine dynamic responses. Also, the model shows a good stability and small responses during waves, wind, and operation of the 750-kW-floating offshore wind turbine.