• Title/Summary/Keyword: Semi-closed Bay

Search Result 29, Processing Time 0.029 seconds

Distribution of Dissolved Heavy Metals in Surface Seawaters Around a Shipyard in Gohyun Bay, Korea (고현만의 조선소 주변 표층해수 중의 용존 중금속 농도 분포)

  • Kim, Kyung Tae;Ra, Kongtae;Kim, Joung Keun;Kim, Eun Soo;Kim, Chong Kwan;Shim, Won Joon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.36-44
    • /
    • 2015
  • The spatial and temporal distribution of dissolved trace metals has been studied to identify trends in space and time and to evaluate the pollution status in a semi-closed bay (Gohyun bay), Korea. Surface seawater samples were collected over four seasons at 18 stations in the bay between 2003 and 2004 and once at 7 stations around a large shipyard in May 2004. The concentration of Cd, Co, Cu, Ni, Pb, and Zn in seawater in February and May were highly variable in space, showing the higher value relative to other season. Those metals concentrations were decreased from inner-to outer-stations. In around the shipyard, Cu, Pb and Zn showed the higher variability depending on time. Cu and Zn concentrations at the sites around the shipyard had 2 times higher values compared with the average of inner stations in Gohyun bay. The very high correlations between salinity and either Cu and Zn has been showed. Especially, there was a significant relationship between Cu and Zn. We recognize that the shipyard is major source of Cu and Zn in seawater. Therefore, marine environment management policy such as the prevention and control of heavy metal input from a shipyard is required.

Prediction of Environmental Change and Mitigation plan for large scale reclamation (대규모 매립에 대한 환경영향예측과 저감방안에 관한 연구)

  • Shin, Bum-Shick;Kim, Kyu-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.95-100
    • /
    • 2010
  • In this study we predicted some of the negative effects on the ocean ecosystem and water quality, caused by a coastal reclamation project in semi-closed bay that makes it extremely difficult to be purified by natural process. In order to predict change of water quality triggered by coastal reclamation, the 3D hydrodynamic model and material cycle model are used. And we suggested new ecological park, an artificial beach and eco-friendly revetments on the reclamation area to mitigate the environmental impacts affecting this area using the numerical simulation results and observation data.

A Study on the Ways to Joint Marine Development and Joint Marine Environmental Protection in Northeast Asia (동북아 해역 권원중첩수역 공동개발합의와 공동환경보호합의 도출 방안)

  • Kim, Ki-Sun
    • Strategy21
    • /
    • s.37
    • /
    • pp.193-241
    • /
    • 2015
  • China, Japan and Korea are the world's top 10 energy consumers, and so very interested in the development of seabed hydrocarbon resources in order to meet their energy demands. The East China Sea is the tri-junction area where three countries' entitlements on the maritime boundaries are overlapped. There are abundant oil reserves in the East China Sea, and therefore competitions among countries are growing to get control of them. Although these countries have concluded the bilateral agreements to jointly develop resources in the East China Sea, they do not function as well. Because joint development and management of seabed petroleum resources can lead to stable development system, and to lower possibility of legal and political disputes, the needs for joint development agreement among three countries are urgent. Meanwhile, Northeast Asian seas are semi-closed seas, which are geographically closed and vulnerable to marine pollution. Moreover there are a lot of nuclear power plants in coastal area, and seabed petroleum resources are being developed. So it is likely to occur nuclear and oil spill accidents. Fukushima nuclear disaster and Bohai Bay oil spill accident in 2011 are the cases to exhibit the potential of major marine pollution accidents in this area. It is anticipated that the risks become higher because power plants and offshore oil platforms are extending gradually. Therefore, the ways to seek the joint marine environmental protection agreement focused on regulation of nuclear power plant and offshore oil platform have to be considered. In this paper, we try to find the way to make joint development and joint environmental protection agreement in Northeast Asian seas. We concentrate on the measure to drive joint development of seabed petroleum deposits in East China Sea's overlap area, despite of maritime delimitation and territorial disputes, and we try to drive joint marine environmental protection system to respond to marine pollution and accidents due to offshore oil platform and nuclear power plants. Through these consideration, we seek solutions to deal with lack of energy, disputes of maritime territorial and boundary delimitation, and marine pollution in Northeast Asia.

Study on the distribution of marine bacteria and the consumption of oxygen in Wonmun bay (원문만의 해양세균분포와 산소소모량에 관한 연구)

  • PARK Young-Tae;LEE Won-Jae;PARK Joo-Suck;LEE Pil_Yong;KIM Hak-Gyoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.5
    • /
    • pp.303-314
    • /
    • 1991
  • Hypoxic bottom $(\leq2.0ml/l),\;40\%\;oxygen\;saturation)$ is formed in the semi-closed Wonmun bay during summer and autumn early. This study was carried out to know seasonal distribution of marine bacteria and the role of marine bacteria for forming the hypoxic bottom at Wonmun bay during summer and autumn early, 1990. During the study periods, 170 bacterial strains were isolated from sea water and sediment. Viable cell counts were ranged between $10^5-10^7\;cells/ml$. The dominant species were Acinetobacter spp. in spring, Flavobacerium spp. in summer, Pseudomonas spp. in autumn, Serratia spp. in winter. Because ETSA(Electron Transport System Activity) reveals potential consumption of oxygen in the aquatic microorganisms, the ETSA was used as potential consumption of oxygen in this study. The potential consumption of oxygen was in the range of $232.4-637.5{\mu}l/O_2/l/day$ by marine organism and $142.6-432.4{\mu}l/O_2/l/day$ by marine bacteria during the study periods. The ratio of potential oxygen consumption of marine bacteria to total marine microorganism was 0.54. The potential consumption of oxygen by marine bacteria closely related with the number of viable cells. Consequently, bacteria play an important role to form Hypoxic bottom at marine environment.

  • PDF

Estimation of Ecological Carrying Capacity for Oyster Culture by Ecological Indicator in Geoje-Hansan Bay (생태지표를 이용한 거제한산만 굴양식장의 생태학적 수용능력 산정)

  • Lee, Won-Chan;Cho, Yoon-Sik;Hong, Sok-Jin;Kim, Hyung-Chul;Kim, Jeong-Bae;Lee, Suk-Mo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.315-322
    • /
    • 2011
  • The importance of aquafarming is increasing all over the world, however the coastal environment in the semi-closed inner bay has been aggravated due to the long term production and the high stocking density. For the sustainable aquafarming, there is a requirement for a eco-friendly fishery management by the estimation of ecological carrying capacity. The model development and application is still in the initial step, because it has to consider the whole ecosystem and all culture activities. As an alternative, there is a requirement for ecological indicator to assess the ecological performance. This study tried the estimation of ecological carrying capacity using ecological indicator. The production and the facility of the oyster farms was 4,935M/T, $49ind./m^3$ in Geoje-Hansan Bay(2008). Filtration pressure indicator was 0.203 which could provide a guidance on the present level of culture development. According to the environmental characteristics and the present oyster farms in Geoje-Hansan Bay, the newly assessed filtration pressure for the acceptable ecological carrying capacity was 0.102. Consequently, ecological carrying capacity in Geoje-Hansan Bay was 2,480M/T, $25ind./m^3$ and this represents the level of culture that can be introduced into Geoje-Hansan Bay without leading to significant changes to ecological process, species, populations or communities. Our study utilized the ecological indicator to estimate ecological carrying capacity of oyster farming for sustainable productivity and this could be the scientific basis for the eco-friendly fishery management.

Marine Environmental Characteristics in the Coastal Area Surrounding Tongyeong Cage-Fish Farms (통영 가두리 양식장 인근 해역에서의 해양환경 특성)

  • Jang, Yu Lee;Lee, Hyo Jin;Moon, Hyo-Bang;Lee, Won-Chan;Kim, Hyung Chul;Kim, Gi Beum
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.74-80
    • /
    • 2015
  • To assess environmental characteristics of the aquaculture area in Tongyeong, pH, dissolved oxygen (DO), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorous (DIP) and chemical oxygen demand (COD), and acid volatile sulfur (AVS) were measured in seawater and sediment samples collected from 10 locations of Tongyeong coastal area from July to December in 2013. The quality of the seawater may be affected by seasonal variation rather than the distance from fish farm. However, sediment was contrary to seawater; the distance from fish farm may be a main factor to affect COD and AVS in sediment than season and other parameters. It is expected that contaminated organic sediments of fishery located in semi-closed bay are rapidly dispersed into surrounding waters due to fast current.

Changes in Marine Environmental Factors and Phytoplankton Community Composition Observed via Short-Term Investigation in a Harbor in the Eastern Part of the South Sea of Korea (남해동부연안항만에서 하계 단주기 조사에 따른 해양환경 및 식물플랑크톤 군집조성의 변화)

  • Lee, Minji;Baek, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.669-676
    • /
    • 2017
  • To understand the relationship between environmental factors and phytoplankton community structures and why early outbreaks of Cochlodinium polykrikoides occur in the inner bay of Korea, short-term investigations were conducted at 17 stations in the eastern part of the South Sea of Korea, with sessions every two weeks from July 7 to August 24, 2016. The water temperature increased from $22.3^{\circ}C$ in the first survey to $28.4^{\circ}C$ in the fourth survey, which was a rise of about $6.01^{\circ}C$. Salinity was relatively high at Stns. 8 13 in the inner bay. In the first survey, rainfall of about 150 mm was observed, so nutrients were supplied at a high level and a high concentrate of Chl. a was observed. Cryptophyta (Crpytomonas spp.) represented 58.3 % of the community, followed by Bacillariophyta at 33.8 %. In particular, at Stn. 5, Dinophyta Prorocentrum spp. accounted for a very high percentage, 32.2 %. In the second survey, low phytoplankton populations were observed, and Bacillariophyta (Chaetoceros spp.) accounted for 61.0 %. At Stn. 4, Skeletonema spp. showed high populations but did not appear at other stations even at a low density. In the third and fourth surveys, phytoplankton populations were very low. Bacillariophyta represented 78.0 % in the third study and 73.3 % in the fourth. Interestingly, although the appearance of C. polykrikoides was investigated at the beginning of the red tide in the coastal area, they were not observed inshore, implying that the likelihood of inflow by the germination of resting cysts was low for the inner bay during this study period. In addition, environmental characteristics such as salinity and nutrient presence were significantly different between sampling stations due to the existence of a semi-closed bay in the southern sea, resulting in dominant phytoplankton species and community composition differing in these short-term investigations.

Estimation of Oxygen Consumption Rate and Organic Carbon Oxidation Rate at the Sediment/Water Interface of Coastal Sediments in the South Sea of Korea using an Oxygen Microsensor (산소 미세전극을 이용한 남해연안 퇴적물/해수 계면에서 산소소모율 및 유기탄소 산화율 추정)

  • Lee, Jae-Seon;Kim, Kee-Hyun;Yu, Jun;Jung, Rae-Hong;Ko, Tae-Seung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.392-400
    • /
    • 2003
  • We used an oxygen microelectrode to measure the vertical profiles of oxygen concentration in sediments located near point sources of organic matter. The measurements were carried out between 13th and 17th May, 2003, in semi-closed bay and coastal sediments in the central part of the South Sea. The measured oxygen penetration depths were extremely shallow and ranged from 1.30 to 3.80 mm. This suggested that the oxidation and reduction reactions in the early diagenesis should be studied at the mm depth scale. In order to estimate the oxygen consumption rate, we applied the one-dimension diffusion-reaction model to vertical profiles of oxygen near the sediment/water interface. Oxygen consumption rates were estimated to be between 10.8 and 27.6 mmol O$_2$ m$\^$-2/ day$\^$-1/(average: 19.1 mmol O$_2$ m$\^$-2/ day$\^$-1/). These rates showed a positive correlation with the organic carbon of the sediments. The corresponding benthic organic carbon oxidation rates calculated using an modified Redfield ratio (170/110) at the sediment/water interface were in the range of 89.5-228.1 mg C m$\^$-2/ day$\^$-1/(average: 158.0 mg C m$\^$-2/ day$\^$-1/). We suggest that these results are maximum values at the presents situation in the bay because the sampling sites were located near point sources of organic materials. This study will need to be carried out at many coastal sites and throughout the seasons to allow an understanding of the mechanisms of eutrophication e.g. the spatial distribution of oxygen consumption within the oxic zone and hypoxic conditions in the coastal sea.

Summer-Time Behaviour and Flux of Suspended Sediments at the Entrance to Semi-Closed Hampyung Bay, Southwestern Coast of Korea (만 입구에서 부유퇴적물 거동과 플럭스: 한반도 서해 남부 함평만의 여름철 특성)

  • Lee, Hee-Jun;Park, Eun-Sun;Lee, Yeon-Gyu;Jeong, Kap-Sik;Chu, Yong-Shik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.105-118
    • /
    • 2000
  • Anchored measurements (12.5 hr) of suspended sediment concentration and other hydrodynamic parameters were carried out at two stations located at the entrance to Hampyung Bay in summer (August 1999). Tidal variations in water temperature and salinity were in the range of 26.0-27.9$^{\circ}C$ and 30.9-31.5, respectively, indicating exchange offshore and offshore water mass. Active tidal mixing processes at the entrance appear to destroy the otherwise vertical stratification in temperature and salinity in spite of strong solar heating in summer. On the contrary, suspended sediment concentrations show a marked stratification with increasing concentrations toward bottom layer. Clastic particles in suspended sediments consist mostly of very fine to fine silt (4-16 ${\mu}$m) with a poorly-sorted value of 14.7-25.9 ${\mu}$m. However, at slack time with less turbulent energy, flocs larger than 40 ${\mu}$m are formed by cohesion and inter-collision of particles, resulting in a higher settling velocity. Strong ebb-dominated and weak flood dominated tidal currents, in the southwestern and the northeastern part, respectively, result in a seaward residual flow of -10${\sim}$-20 cm $s^{-1}$ at station H1 and a bayward residual flow less than 5.0 cm $s^{-1}$ at station H2. However, mean concentration of suspended sediments at station H1 is higher at flood (95.0-144.1 mg $1^{-1}$) than in ebb (75.8-120.9 mg $1^{-1}$). On the contrary, at the station H2, the trend is reversed with higher concentration at the ebb (84.7-158.4 mg $1^{-1}$) than that at the flood (53.0-107.9 mg $1^{-1}$). As a result, seaward net suspended sediment fluxes ($f_{s}$) are calculated to be -1.7 ${\sim}$-$15.610^{3}$ kg $m^{-2}$ $s^{-1}$ through the whole water column. However, the stations H1 and H2 show definitely different values of the flux with higher ones in the former than in the latter. Alternatively, depth-integrated net suspended sediment loads ($\c{Q}_{s}$) for one tidal cycle are also toward the offshore with ranges of 0.37${\times}$$10^{3}$ kg $m^{-1}$ and 0.21${\times}$$10^{3}$ kg $m^{-1}$, at station H1 and H2, respectively. This seaward transport of suspended sediment in summer suggests that summer-time erosion in the Hampyung muddy tidal flats is a rather exceptional phenomenon compared to the general deposition reported for many other tidal flats on the west coast of Korea.

  • PDF