• 제목/요약/키워드: Semi-automatic Annotation

검색결과 16건 처리시간 0.025초

형태소 깎는 노인: 국어사 자료를 위한 형태분석 보조기 (The POS Elderly: Semi-automatic annotation tool for Historical Korean)

  • 김미경;박수지;이상아
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.39-43
    • /
    • 2016
  • '형태소 깎는 노인'은 국어사 자료를 처리하는 고성능 자동 형태분석기의 개발이 난항을 겪고 있는 상황에서 수동으로 형태분석 작업을 하는 연구자들을 지원하기 위하여 개발된 형태분석 보조기이다. 인간과 기계의 분업을 통해 인간의 피로를 최대한 줄이고, 단순 반복 형태에 대해서는 정답을 확실하게 제안할 수 있다는 것이 특징이다. 국어사 자료에는 한국어 정보처리를 위해 필요한 어휘 사전이 없으므로, 문법형태소 사전을 만들어 이를 단서로 조사/어미부와 어간부를 구분하도록 하였다. 이를 통해 구축된 소규모 형태분석 말뭉치들이 장기적으로는 자동 형태분석기의 성능 개선에 일조할 수 있을 것으로 기대한다.

  • PDF

형태소 깎는 노인: 국어사 자료를 위한 형태분석 보조기 (The POS Elderly: Semi-automatic annotation tool for Historical Korean)

  • 김미경;박수지;이상아
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.39-43
    • /
    • 2016
  • '형태소 깎는 노인'은 국어사 자료를 처리하는 고성능 자동 형태분석기의 개발이 난항을 겪고 있는 상황에서 수동으로 형태분석 작업을 하는 연구자들을 지원하기 위하여 개발된 형태분석 보조기이다. 인간과 기계의 분업을 통해 인간의 피로를 최대한 줄이고, 단순 반복 형태에 대해서는 정답을 확실하게 제안할 수 있다는 것이 특징이다. 국어사 자료에는 한국어 정보처리를 위해 필요한 어휘 사전이 없으므로, 문법형태소 사전을 만들어 이를 단서로 조사/어미부와 어간부를 구분하도록 하였다. 이를 통해 구축된 소규모 형태분석 말뭉치들이 장기적으로는 자동 형태분석기의 성능 개선에 일조할 수 있을 것으로 기대한다.

  • PDF

위키피디아 기반 개체명 사전 반자동 구축 방법 (A Semi-automatic Construction method of a Named Entity Dictionary Based on Wikipedia)

  • 송영길;정석원;김학수
    • 정보과학회 논문지
    • /
    • 제42권11호
    • /
    • pp.1397-1403
    • /
    • 2015
  • 개체명은 다양한 자연어처리 연구 및 서비스에 중요한 정보로 이용된다. 개체명 인식의 성능을 향상시키기 위한 여러 연구에서 개체명 사전을 이용한 자질이 개체명 인식 성능에 큰 영향을 준다는 것을 보이고 있다. 그러나 개체명 사전을 구축하는 것은 매우 시간 소모적이고, 인력 소모적인 작업이다. 이를 완화하기 위해서 본 논문에서는 개체명 사전을 반자동으로 구축하는 방법을 제안한다. 제안 시스템은 능동학습을 이용하여 위키피디아 분류정보로 구성된 가상 문서를 개체명 범주 당 하나씩 생성한다. 그리고 잘 알려진 정보검색 모델인 BM25를 이용하여 위키피디아 엔트리와 가상문서 사이의 유사도를 계산한다. 마지막으로 유사도를 바탕으로 각 위키피디아 엔트리를 개체명 범주로 분류한다. 서로 다른 3종류의 개체명 범주 집합에서 실험한 결과, 제안 시스템은 매크로 평균 F1-점수 0.9028, 마이크로 평균 F1-점수 0.9554이라는 높은 성능을 보였다.

대화 패턴 기반 대화 의도 반자동 부착 방법 (Semi-Automatic Dialog Act Annotation based on Dialog Patterns)

  • 최승권;정상근;김영길
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1298-1301
    • /
    • 2013
  • 대화 시스템에서 올바른 대화를 진행하기 위해서는 화자의 대화 의도를 파악하는 것이 중요하다. 특히 영어를 교육하기 위한 영어 교육용 대화 시스템에서는 학습자의 대화 의도 파악 오류가 발생할 경우 영어 교육에 문제가 발생하기 때문에 학습자의 대화 의도를 더욱 정확하게 분석 및 파악하는 것이 중요하다. 대화 패턴이란 시스템 발화에 대응되는 사용자 발화의 규칙적인 연쇄라고 할 수 있다. 대화 패턴 기반 대화 의도 부착 방법은 1) 대화 코퍼스 구축 2) 대화 시나리오에 있는 발화를 대상으로 기본 명사구 청킹(Base NP Chunking)을 하고 중심어(Head Word), 토픽 추적(Topic Tracking)에 의한 대화 패턴을 자동으로 추출한 후, 3) 대화 패턴 수동 검수이다. 대화 패턴 기반 대화 의도 부착 방법은 기본 명사구에 대한 지식만 가지고 있으면 대량으로 구축할 수 있다는 장점이 있다. 99 개의 대화 시나리오를 학습코퍼스로 하고 1 개의 대화 시나리오에 대해 대화턴 성공률을 시물레이션 한 결과 63.64%가 나왔다.

개체명 사전 기반의 반자동 말뭉치 구축 도구 (A Semi-automatic Annotation Tool based on Named Entity Dictionary)

  • 노경목;김창현;천민아;박호민;윤호;김재균;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.309-313
    • /
    • 2017
  • 개체명은 인명, 지명, 조직명 등 문서 내에서 중요한 의미를 가지므로 질의응답, 요약, 기계번역 분야에서 유용하게 사용되고 있다. 개체명 인식은 문서에서 개체명에 해당하는 단어를 찾아 개체명 범주를 부착하는 작업을 말한다. 개체명 인식 연구에는 개체명 범주가 부착된 개체명 말뭉치를 사용한다. 개체명의 범주는 연구 분야에 따라 다양하게 정의되므로 연구 분야에 적합한 개체명 말뭉치가 필요하다. 하지만 이런 말뭉치를 구축하는 일은 시간과 인력이 많이 필요하다. 따라서 본 논문에서는 개체명 사전 기반의 반자동 말뭉치 구축 도구를 제안한다. 제안하는 도구는 크게 전처리, 사용자 태깅, 후처리 단계로 나뉜다. 전처리 단계는 자동으로 개체명을 찾는 단계이다. 약 11만 개의 개체명을 기반으로 하여 트라이(trie) 구조의 개체명 사전을 구축한 후 사전을 이용하여 개체명을 자동으로 찾는다. 사용자 태깅 단계는 사용자가 수동으로 개체명을 태깅하는 단계이다. 전처리 단계에서 찾은 개체명 중 오류가 있는 개체명들은 수정하거나 삭제하고, 찾지 못한 개체명들은 사용자가 추가로 태깅하는 단계이다. 후처리 단계는 태깅한 결과로부터 사전 정보를 갱신하는 단계이다. 제안한 말뭉치 구축 도구를 이용하여 752개의 뉴스 기사에 대해 개체명을 태깅한 결과 7,620개의 개체명이 사전에 추가되었다. 제안한 도구를 사용한 결과 사용하지 않았을 때 비해 약 57.6% 정도 태깅 횟수가 감소했다.

  • PDF

개체명 사전 기반의 반자동 말뭉치 구축 도구 (A Semi-automatic Annotation Tool based on Named Entity Dictionary)

  • 노경목;김창현;천민아;박호민;윤호;김재균;김재훈
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.309-313
    • /
    • 2017
  • 개체명은 인명, 지명, 조직명 등 문서 내에서 중요한 의미를 가지므로 질의응답, 요약, 기계번역 분야에서 유용하게 사용되고 있다. 개체명 인식은 문서에서 개체명에 해당하는 단어를 찾아 개체명 범주를 부착하는 작업을 말한다. 개체명 인식 연구에는 개체명 범주가 부착된 개체명 말뭉치를 사용한다. 개체명의 범주는 연구 분야에 따라 다양하게 정의되므로 연구 분야에 적합한 개체명 말뭉치가 필요하다. 하지만 이런 말뭉치를 구축하는 일은 시간과 인력이 많이 필요하다. 따라서 본 논문에서는 개체명 사전 기반의 반자동 말뭉치 구축 도구를 제안한다. 제안하는 도구는 크게 전처리, 사용자 태깅, 후처리 단계로 나뉜다. 전처리 단계는 자동으로 개체명을 찾는 단계이다. 약 11만 개의 개체명을 기반으로 하여 트라이(trie) 구조의 개체명 사전을 구축한 후 사전을 이용하여 개체명을 자동으로 찾는다. 사용자 태깅 단계는 사용자가 수동으로 개체명을 태깅하는 단계이다. 전처리 단계에서 찾은 개체명 중 오류가 있는 개체명들은 수정하거나 삭제하고, 찾지 못한 개체명들은 사용자가 추가로 태깅하는 단계이다. 후처리 단계는 태깅한 결과로부터 사전 정보를 갱신하는 단계이다. 제안한 말뭉치 구축 도구를 이용하여 752개의 뉴스 기사에 대해 개체명을 태깅한 결과 7,620개의 개체명이 사전에 추가되었다. 제안한 도구를 사용한 결과 사용하지 않았을 때 비해 약 57.6% 정도 태깅 횟수가 감소했다.

  • PDF