• 제목/요약/키워드: Semi-active control

검색결과 413건 처리시간 0.024초

지도학습과 강화학습을 이용한 준능동 중간층면진시스템의 최적설계 (Optimal Design of Semi-Active Mid-Story Isolation System using Supervised Learning and Reinforcement Learning)

  • 강주원;김현수
    • 한국공간구조학회논문집
    • /
    • 제21권4호
    • /
    • pp.73-80
    • /
    • 2021
  • A mid-story isolation system was proposed for seismic response reduction of high-rise buildings and presented good control performance. Control performance of a mid-story isolation system was enhanced by introducing semi-active control devices into isolation systems. Seismic response reduction capacity of a semi-active mid-story isolation system mainly depends on effect of control algorithm. AI(Artificial Intelligence)-based control algorithm was developed for control of a semi-active mid-story isolation system in this study. For this research, an practical structure of Shiodome Sumitomo building in Japan which has a mid-story isolation system was used as an example structure. An MR (magnetorheological) damper was used to make a semi-active mid-story isolation system in example model. In numerical simulation, seismic response prediction model was generated by one of supervised learning model, i.e. an RNN (Recurrent Neural Network). Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm The numerical simulation results presented that the DQN algorithm can effectively control a semi-active mid-story isolation system resulting in successful reduction of seismic responses.

Probabilistic behavior of semi-active isolated buildings under pulse-like earthquakes

  • Oncu-Davas, Seda;Alhan, Cenk
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.227-242
    • /
    • 2019
  • Seismic isolation systems employ structural control that protect both buildings and vibration-sensitive contents from destructive effects of earthquakes. Structural control is divided into three main groups: passive, active, and semi-active. Among them, semi-active isolation systems, which can reduce floor displacements and accelerations concurrently, has gained importance in recent years since they don't require large power or pose stability problems like active ones. However, their seismic performance may vary depending on the variations that may be observed in the mechanical properties of semi-active devices and/or seismic isolators. Uncertainties relating to isolators can arise from variations in geometry, boundary conditions, material behavior, or temperature, or aging whereas those relating to semi-active control devices can be due to thermal changes, inefficiencies in calibrations, manufacturing errors, etc. For a more realistic evaluation of the seismic behavior of semi-active isolated buildings, such uncertainties must be taken into account. Here, the probabilistic behavior of semi-active isolated buildings under historical pulse-like near-fault earthquakes is evaluated in terms of their performance in preserving structural integrity and protecting vibration-sensitive contents considering aforementioned uncertainties via Monte-Carlo simulations of 3-story and 9-story semi-active isolated benchmark buildings. The results are presented in the form of fragility curves and probability of failure profiles.

대형 구조물의 진동제어를 위한 반능동형 댐퍼의 설계 (Design of Semi-Active Tendon for Vibration Control of Large Structures)

  • 김상범;윤정방;구자인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.282-286
    • /
    • 2000
  • In this paper, magneto-rheological(MR) damper is studied for vibration control of large infra structures under earthquake. Generally, active control devices need a large control force and a high power supply system to reduce the vibration effectively. Large and miss tuned control force may induce the dangerous situation such that the generated large control force acts to amplify the structural vibration. Recently, to overcome the weaknesses of the active control, the semi-active control method is suggested by many researchers. Semi-active control uses the passive control device of which the characteristics can be modified. Control force of the semi-active device is not generated from the actuator with power supply. It is generated as a dynamic reaction force of the device same as in the passive control case, so the control system is inherently stable and robust. Unlike the case of passive control, control force of semi-active control is adjusted depending on the measured response of the structure, so the vibration can be reduced more effectively against various unknown environmental loads. Magneto-rheological(MR) damper is one of the semi-active devices. Dynamic characteristics of the MR material can be changed by applying the magnetic fields. So the control of MR damper needs only small power. Response time of MR to the input voltage is very short, so the high performance control is possible. MR damper has a high force capacity so it is adequate to the vibration control of large infra structure. Because MR damper has a nonlinear property, normal control method used in active control may not be effective. Clipped optimal control, modified bang-bang control etc. have been suggested to MR damper by many researchers. In this study, sliding mode fuzzy control(SMFC) is applied to MR damper. Genetic algorithm is used for the controller tuning. To verify the applicability of MR damper and suggested algorithm, numerical simulation on the aseismic control is carried out. Simulation model is three-story building structure, which was used in the paper of Dyke, et al. The control performance is compared with clipped optimal control. The present results indicate that the SMFC algorithm can reduce the earthquake-induced vibration very effectively.

  • PDF

승용차용 반능동 현가시스템의 제어 (Control of Semi-active Suspensions for Passenger Cars(I))

  • 조영완;이경수
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2179-2186
    • /
    • 1997
  • In this paper, the performance of a semi-active suspension system for a passenger car has been investigated. Alternative semi-active suspensions control laws has been compared via simulations. The control laws investigated in this study are : sprung mass velocity feedback control law, sky-hook damping control law, and state feedback control law. Simulation results show that a semi-active suspension has potential to improve ride quality of automobiles.

사장교의 지진응답제어를 위한 준능동 MR 감쇠기의 퍼지제어 (Fuzzy Control of Semi-Active Magneto-Rheological Dampers for Seismic Response Control of Cable-Stayed Bridge)

  • 옥승용;김동석;고현무;박관순
    • 한국지진공학회논문집
    • /
    • 제9권6호
    • /
    • pp.75-90
    • /
    • 2005
  • 사장교의 효과적 지진응답제어를 위하여 MR 감쇠기를 이용한 준능동 퍼지 제어기법을 제시하였다. 제시하는 방법은 MR 감쇠기의 응답정보만을 이용한 퍼지추론 과정을 통하여 준능동 제어를 수행하는 방법으로서, 능동제어이론에 기반한 기존 준능동 제어기법과 달리, 별도의 능동제어기를 설계할 필요가 없는 간단한 구조로서 구성될 수 있다. 제시한 제어기법의 제어성능을 평가하기 위해 사장교 벤치마크 문제에 적용하였으며 기존 준능동 제어기법들과의 성능비교를 통하여 그 효율성을 평가하였다. 제어성능을 비교한 결과, 제시하는 준능동 퍼지 제어기법은 주탑의 전단력 및 휨모멘트, 데크의 수평변위, 그리고 케이블 장력 등의 상충하는 지진응답들을 동시에 효과적으로 제어함으로써 지진응답제어에 매우 효율적인 제어전략이 될 수 있음을 보였다.

맥퍼슨형 반능동 현가장치의 노면적응형 스카이훅 제어와 HILS (Road Adaptive Skyhook Control and HILS for Semi-Active Macpherson Suspension Systems)

  • 박배정;홍금식
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.34-44
    • /
    • 2000
  • In this paper, a modified skyhook control for the semi-active Macpherson suspension system is investigated. A new model for the semi-active type suspension, which incorporates the rotational motion of the unsprung mass, is introduced and an output feedback control law using the skyhook control method is derived. The gains in the skyhook controller are adaptively adjusted by estimating the road conditions. Because two vertical acceleration sensors, one for the sprung mass and another for the unsprung mass, are used rather than using the angle sensor for the rotational motion of the control arm, the relative velocity of the rattle space is filtered using the acceleration signals. For testing the control performance, the actual damping force has been incorporated via the hardware-in-the-loop simulations. The performances of a passive damper and a semi-active damper are compared. Simulation results are provided.

  • PDF

준능동 MR 감쇠기를 이용한 인접빌딩의 지진응답 퍼지제어 (Seismic Response Fuzzy Control of Adjacent Building using Semi-active MR Dampers)

  • 옥승용;김동석;박관순;고현무
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.495-502
    • /
    • 2006
  • Seismic performance of semi-active fuzzy control algorithm to operate MR dampers for coupling adjacent building is investigated in this paper. In the proposed semi-active control technique, the fuzzy logic is used as a method to adjust input voltage to MR damper. In order to validate control performance of proposed technique, the seismic performance of the semi-active fuzzy control system is compared with that of passive control system where the input voltage to MR damper is set to display maximum damping force. The simulated results show that the semi-active fuzzy control technique effectively regulates the trade-off existing between seismic responses of two buildings subject to various earthquake excitations.

  • PDF

자동차용 현가장치의 반능동 제어 시스템의 설계파라미터에 대한 연구 (A Study on the Design Parameter of Semi-active Control System for the Vehicle Suspension)

  • 박호;한창수;이명호;노병옥
    • 한국공작기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.97-103
    • /
    • 2002
  • In the determination of control laws of semi-active suspension system, optimal control theory is applied, which used in the design of fully active suspension system and in the performance index sense. Optimal semi-active control laws are designed, and the computer program is developed fur estimation of performance In the time and frequency domain. It is certified that in the semi-active control system, it is desirable to minimize the spring constant and damping coefficient as possible in the given constraints. The effect of performance improvement which is almost equal to fully active type is obtained.

반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어 (Neuro-Control of Seismically Excited Structures using Semi-active MR Fluid Damper)

  • 이헌재;정형조;오주원;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.313-320
    • /
    • 2002
  • A new semi-active control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system consists of the improved neuro-controller and the bang-bang-type controller. The improved neuro-controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then the bang-bang-type controller causes the MR fluid damper to generate the desired control force, so long as this force is dissipative. In numerical simulation, a three-story building structure is semi-actively controlled by the trained neural network under the historical earthquake records. The simulation results show that the proposed semi-active neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semi-active control system using MR fluid dampers has many attractive features, such as the bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semi-active neuro-control strategy using MR fluid dampers could be effectively used for control of seismically excited structures.

  • PDF

Vibration control laws via shunted piezoelectric transducers: A review

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chen, JinJin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권1호
    • /
    • pp.1-19
    • /
    • 2014
  • Attaching a piezoelectric transducer to a vibrating structure, and shunting it with an electric circuit, gives rise to different passive, semi-passive, and semi-active control techniques. This paper attempts to review the research related to structural vibration control, via passive, semi-passive, and semi-active control methods. First, the existing electromechanical modeling is reviewed, along with the modeling methods. These range from lumped parameters, to distributed parameters modeling of piezostructural systems shunted by electrical networks. Vibration control laws are then discussed, covering passive, semi-passive, and semi-active control techniques, which are classified according to whether external power is supplied to the piezoelectric transducers, or not. Emphasis is placed on recent articles covering semi-passive and semi-active control techniques, based upon switched shunt circuits. This review provides the necessary background material for researchers interested in the growing field of vibration damping and control, via shunted piezostructural systems.