• Title/Summary/Keyword: Semi-active control

Search Result 413, Processing Time 0.026 seconds

Analysis of Magneto-rheological Fluid based Semi-active Squeeze Film Damper and Its Application to Unbalance Response Control of Rotor (자기유변유체를 이용한 반능동형 스퀴즈 필름 댐퍼의 해석 및 회전체 불균형 응답 제어)

  • Kim, Keun-Joo;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1005-1011
    • /
    • 2004
  • Squeeze film dampers (SFDs) have been commonly used to effectively enhance the dynamic behavior of the rotating shaft supported by rolling element bearings. However, due to the recent trends of high operating speed, high load capacity and light weight in rotating machinery, it is becoming increasingly important to change the dynamic characteristics of rotating machines in operation so that the excessive vibrations, which may occur particularly when passing through critical speeds or unstable regions, can be avoided. Semi-active type SFDs using magneto-rheological fluid (MR fluid), which responds to an applied magnetic field with a change in rheoloaical behavior, are introduced in order to find its applications to rotating machinery as an effective device attenuating unbalance responses. In this paper, a semi-active SFD using MR fluid is designed, tested and identified by means of linear analysis to investigate the capability of changing its dynamic properties such as damping and stiffness. Furthermore, the proposed device is applied to a rotor system to investigate its potential capability for vibration attenuation: an efficient method for selecting the optimal location of the proposed damper is introduced and control algorithm that could improve the unbalance response properties of a flexible rotor is also proposed.

  • PDF

Comparing fuzzy type-1 and -2 in semi-active control with TMD considering uncertainties

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.155-171
    • /
    • 2019
  • In this study, Semi-active Tuned Mass Dampers (STMDs) are employed in order to cover the prevailing uncertainties and promote the efficiency of the Tuned Mass Dampers (TMDs) to mitigate undesirable structural vibrations. The damping ratio is determined using type-1 and type-2 Fuzzy Logic Controllers (T1 and T2 FLC) based on the response of the structure. In order to increase the efficiency of the FLC, the output membership functions are optimized using genetic algorithm. The results show that the proposed FLC can reduce the sensitivity of STMD to excitation records. The obtained results indicate the best operation for T1 FLC among the other control systems when the uncertainties are neglected. According to the irrefutable uncertainties, three supplies for these uncertainties such as time delay, sensors measurement noises and the differences between real and software model, are investigated. Considering these uncertainties, the efficiencies of T1 FLC, ground-hook velocity-based, displacement-based and TMD reduce significantly. The reduction rates for these algorithms are 12.66%, 26.43%, 20.98% and 21.77%, respectively. However, due to nonlinear behavior and considering a range of uncertainties in membership functions, T2 FLC with 7.2% reduction has robust performance against uncertainties compared to other controlling systems. Therefore, it can be used in actual applications more confidently.

Real-time Semi-active Vibration Control in Cable-stayed Bridges by Shear-type MR damper and Clipped-optimal Control Algorithm (전단형 MR 댐퍼 및 Clipped-optimal 제어알고리즘을 이용한 사장교의 실시간 준능동 진동제어)

  • Heo, Gwanghee;Jeon, Joonryong;Jeon, Seunggon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.113-123
    • /
    • 2016
  • This paper is concerned with an experimental research to control of random vibration caused by external loads specially in cable-stayed bridges which tend to be structurally flexible. For the vibration control, we produced a model structure modelled on Seohae Grand Bridge, and we designed a shear type MR damper. On the center of its middle span, we placed a shear type MR damper which was to control its vibration and also acquire its structural responses such as displacement and acceleration at the same site. The experiments concerning controlling vibration were performed according to a variety of theories including un-control, passive on/off control, and clipped-optimal control. Its control performance was evaluated in terms of the absolute maximum displacements, RMS displacements, the absolute maximum accelerations, RMS accelerations, and the total power required to control the bridge which differ from each different experiment method. Among all the methods applied in this paper, clipped-optimal control method turned out to be the most effective to reduces of displacements, accelerations, and external power. Finally, It is proven that the clipped-optimal control method was effective and useful in the vibration control employing a semi-active devices such MR damper.

A novel hybrid control of M-TMD energy configuration for composite buildings

  • ZY Chen;Yahui Meng;Ruei-Yuan Wang;T. Chen
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.475-483
    • /
    • 2023
  • In this paper, a new energy-efficient semi-active hybrid bulk damper is developed that is cost-effective for use in structural applications. In this work, the possibility of active and semi-active component configurations combined with suitable control algorithms, especially vibration control methods, is explored. The equations of motion for a container bridge equipped with an MDOF Mass Tuned Damper (M-TMD) system are established, and the combination of excitation, adhesion, and control effects are performed by a proprietary package and commercial custom submodel software. Systematic methods for the synthesis of structural components and active systems have been used in many applications because of the main interest in designing efficient devices and high-performance structural systems. A rational strategy can be established by properly controlling the master injection frequency parameter. Simulation results show that the multiscale model approach is achieved and meets accuracy with high computational efficiency. The M-TMD system can significantly improve the overall response of constrained structures by modestly reducing the critical stress amplitude of the frame. This design can be believed to build affordable, safe, environmentally friendly, resilient, sustainable infrastructure and transportation.

Nonlinear seismic damage control of steel frame-steel plate shear wall structures using MR dampers

  • Xu, Longhe;Li, Zhongxian;Lv, Yang
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.937-953
    • /
    • 2014
  • A semi-active control platform comprising the mechanical model of magnetorheological (MR) dampers, the bang-bang control law and damage material models is developed, and the simulation method of steel plate shear wall (SPSW) and optimization method for capacity design of MR dampers are proposed. A 15-story steel frame-SPSW structure is analyzed to evaluate the seismic performance of nonlinear semi-active controlled structures with optimal designed MR dampers, results indicate that the control platform and simulation method are stable and fast, and the damage accumulation effects of uncontrolled structure are largely reduced, and the seismic performance of controlled structures has been improved.

Hybrid Control Model of MR Damper for Seismic Response Control of Adjacent Buildings (인접건축물의 지진응답 제어를 위한 MR 감쇠기의 복합제어 모델)

  • Kim, Gee-Cheol;Kang, Joo-Won;Chae, Seoung-Hun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.101-110
    • /
    • 2011
  • Many researchers have attempted to apply semi-active control systems in the civil engineering structures. Recently, magneto-rheological(MR) fluid dampers have been developed. This MR damper is one of semi-active dampers as a new class of smart dampers. This paper discusses the application of MR damper for seismic response control of adjacent buildings subjected to earthquake. Here, a controllable damping force of MR damper that is installed between adjacent buildings is applied to seismic response control. A hybrid model combines skyhook and groundhook control algorithm so that the benefits of each can be combined together. In this paper, hybrid control model are applied to the multi degree of freedom system representative of buildings in order to reduce seismic response of adjacent buildings. And the performance of hybrid control model is compared with that of others. It was demonstrated that hybrid control model or adjacent buildings with MR damper was effective for seismic response control of two adjacent buildings reciprocally.

A study on the inner flow fields characteristics of the Semi-active muffler (반능동형 머플러 내부의 유동장특성에 관한 연구)

  • Park Kyoung-Suk;Heo Hyung-Seok;Park Se-Jong;Son Sung-Man;Kim Dong-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.125-131
    • /
    • 2006
  • Recently air pollution has become an important issue. So, as tile number of vehicles increases, the noise pollution has become one of the most serious social issues nowadays. It is a muffler, which is one of the vehicle components. that has the hugest impact on the noise from the vehicle. And it also has a direct influence on the engine performance. So lately the research is proceeding on tile semi-active muffler which can control the back pressure variably by setting up the exhaust variable valve in the baffle to improve its internal structure. The inner parts of muffler which consist of a baffle, pipes and etc. appear to have the complicated turbulence phenomena by the pulsational wave of an unsteady state in the engine and by the structural characteristics of the inner parts. To analyze these phenomena, it is required to have an analysis of its constant quantity and quality. Therefore this study is to analyze with PIV measurement which can analyze the time and space variables, not with the point measurement method like former multi-point anemometer. It is to suggest proper design variables which need to make internal structure of the muffler improve though comparison between the passive type muffler and the semi-active muffler by fabricating a muffler which can be visualized.

Development of High Voltage Power Supply for Semi-Active Suspension System Using ER Fluids (ER 유체를 이용한 반능동 현가장치용 고전압 전원장치의 개발)

  • 정세교;신휘범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.453-464
    • /
    • 2002
  • The electrorheological(ER) fluid is a new material and is used for the mechanical motion devices such as semi-active suspensions, high speed clutches, and vibration isolators. The ER fluid applications need high voltage power supplies having special requirements to control the viscosity of the ER fluid. This paper deals with the development of the high voltage power supply for the semi-active suspension system using the ER fluid. The characteristics of the ER fluid are analyzed, and the design and implementation of the high voltage power supply are presented. It is well demonstrated through the experiment that the developed high voltage power supply shows a good performance suitable for the ER fluid application.

A Strategy to Evaluate Semi-Active Suspension System using Real-Time Hardware-in-the-Loop Simulation (실시간 Hardware-in-the-Loop 시뮬레이션을 이용한 반능동 현가시스템 특성 평가)

  • Choi, G.J.;Noh, K.H.;Yoo, Y.M.;Kim, H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.186-194
    • /
    • 2001
  • To meet the challenge of testing increasingly complex automotive control systems, the real-time hardware-in-the-loop(HIL) simulation technology has been developed. In this paper, a strategy for evaluation of semiactive suspension systems using real-time HIL simulation is presented. A multibody vehicle model is adopted to simulate vehicle dynamic motions accurately. Accuracy of the vehicle simulation results is compared to that of the real vehicle field test and proven to be very accurate. The controller and stepping motor to adjust semi-active damper stage are equipped as external hardwares and connected to the real-time computer which has vehicle dynamic model. Open and closed loop test methods are used to evaluate a controlled suspension system and the system's operations are verified it is found that the proposed evaluation methods can be used well for the verification of semi-active suspension systems.

  • PDF

Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension System: Implementation and Experiment

  • Tae, Hong-Kyung;Chul, Sohn-Hyun;Ryong, Jung-Jae;Shik, Hong-Keum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.178.4-178
    • /
    • 2001
  • In this paper a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype ...

  • PDF