• 제목/요약/키워드: Semi-active control

검색결과 413건 처리시간 0.028초

자동차 실내 소음저감을 위한 다채널 능동소음 제어에 관한 연구 II : 모의 실험 (A Study on the Multi-Channel Active Noise Control for Noise Reduction of the Vehicle Cabin II : Semi-experiment)

  • 김흥섭;이태연;신준;오재응
    • 한국자동차공학회논문집
    • /
    • 제2권6호
    • /
    • pp.29-37
    • /
    • 1994
  • Active noise control of random noise which propatate in the vehicle cabin as a form of spherical wave is the target of this study. In the previous study, the adaptive algorithm for adaptive controller is presented for the application in active noise control system. And for the preliminary study of adaptive active noise control in vehicle cabin as a real system, a computer simulation is performed on the effectiveness of the adaptive algorithm in the amplitude of the pressure fluctuation. This work studies the implementation of multi-channel feedforward adaptive algorithm for the reduction of the noise inside a vehicle cabin using a number of secondary sources derived by adaptive filtering of reference noise source. Multi-channel adaptive feedforward algorithm are verified in numerical simulation and semi-experimental justification of developed system is made on a domestic passenger car. In the results of semi-experimental study, the noise of specific region in the interior of automobile are reduced for the appreciabe sound pressure level in the operating engine rpm and finally this study suggests the capabilities of the real time active noise control in 3 dimensional acoustic fields.

  • PDF

Time delay study for semi-active control of coupled adjacent structures using MR damper

  • Katebi, Javad;Zadeh, Samira Mohammady
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.1127-1143
    • /
    • 2016
  • The pounding phenomenon in adjacent structures happens in severing earthquakes that can cause great damages. Connecting neighboring structures with active and semi-active control devices is an effective method to avoid mutual colliding between neighboring buildings. One of the most important issues in control systems is applying online control force. There will be a time delay if the prose of producing control force does not perform on time. This paper proposed a time-delay compensation method in coupled structures control, with semi-active Magnetorheological (MR) damper. This method based on Newmark's integration is adopted to mitigate the time-delay effect. In this study, Lyapunov's direct approach is employed to compute demanded voltage for MR dampers. Using Lyapunov's direct algorithm guarantees the system stability to design a controller based on feedback. Because of the strong nonlinearity of MR dampers, the equation of motion of coupled structures becomes an involved equation, and it is impossible to solve it with the common time step methods. In present paper modified Newmark-Beta integration based on the instantaneous optimal control algorithm, used to solve the involved equation. In this method, the response of a coupled system estimated base on optimal control force. Two MDOF structures with different degrees of freedom are finally considered as a numeric example. The numerical results show, the Newmark compensation is an efficient method to decrease the negative effect of time delay in coupled systems; furthermore, instantaneous optimal control algorithm can estimate the response of structures suitable.

Fuzzy hybrid control of a wind-excited tall building

  • Kang, Joo-Won;Kim, Hyun-Su
    • Structural Engineering and Mechanics
    • /
    • 제36권3호
    • /
    • pp.381-399
    • /
    • 2010
  • A fuzzy hybrid control technique using a semi-active tuned mass damper (STMD) has been proposed in this study for mitigation of wind induced motion of a tall building. For numerical simulation, a third generation benchmark is employed for a wind-excited 76-story building. A magnetorheological (MR) damper is used to compose an STMD. The proposed control technique employs a hierarchical structure consisting of two lower-level semi-active controllers (sub-controllers) and a higher-level fuzzy hybrid controller. Skyhook and groundhook control algorithms are used as sub-controllers. When a wind load is applied to the benchmark building, each sub-controller provides different control commands for the STMD. These control commands are appropriately combined by the fuzzy hybrid controller during realtime control. Results from numerical simulations demonstrate that the proposed fuzzy hybrid control technique can effectively reduce the STMD motion as well as building responses compared to the conventional hybrid controller. In addition, it is shown that the control performance of the STMD is superior to that of the sample TMD and comparable to an active TMD, but with a significant reduction in power consumption.

TLCD를 이용한 지진하중을 받는 3차원 비정형 건축구조물의 응답제어 (RESPONSE CONTROL OF 3D IRREGULAR BUILDINGS UNDER SEISMIC EXCITATIONS USING TLCD)

  • 김홍진;김형섭;안상경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.66-71
    • /
    • 2003
  • The semi-active TLCD system is investigated for control of responses of 3D irregular buildings under seismic excitations. The TLCD system is a special type of TMD system providing a performance similar to a TMD system but offers a number of practical advantages over the traditional TMD system. The equations of motion for the combined building and TLCD system are derived for multistory building structures with rigid floors and plan and elevation irregularities. Simulation results for control of two multistory moment-resisting space structures with vertical and plan irregularities show clearly that the semi-active TLCD control system reduces the responses of 3D irregular buildings subjected to earthquake ground motions efficiently.

  • PDF

디지털 댐퍼의 지능제어 특성 (Intelligence Control Characteristics of a Digital Damper)

  • 송준호;이육형
    • 한국기계가공학회지
    • /
    • 제5권3호
    • /
    • pp.5-10
    • /
    • 2006
  • The objective of this paper is to investigate the Intelligence control characteristics of a digital damper. This paper deals with a two-degree-of-freedom suspension using the damper with ER fluid for a quarter vehicle system. The control law for semi-active suspensions modeled in this study is developed using passive and ANFIS control method. Computer simulation results show that the semi-active suspension with ER damper has good performances of ride quality.

  • PDF

Adaptive LQG Control for Semi -Active Suspension Systems: Disturbance Rejection Capability

  • Sohn, Hyun-Chul;Hong, Kyung-Tae;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.47.5-47
    • /
    • 2001
  • In this paper. a road-adaptive LQG control for the semiactive Macpherson strut suspension system of hydraulic type is investigated. A new control oriented model, which incorporates the rotational motion of the unsprung mass, is introduced. A semi-active suspension controller adapting to road variations is proposed. First, based on the extended least squares estimation algorithm, a LQG controller adapting to the estimated road characteristics is designed. Through the computer simulations, the performance of the proposed semi-active suspension is compared with that of a non-adaptive one. The results show better control performance of the proposed system over the compared one.

  • PDF

연속 가변형 충격흡수기의 감쇠성능 해석 (Damping performance Analysis for an Electronically Contralled Shock Absorber)

  • 박재우;이동락;백운경
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.192-201
    • /
    • 2001
  • Analyzing internal structure, flow rate and dynamic behavior characteristics of electronically controlled shock absorber, damping performance limit is identified to comprise the two reciprocal characteristics of ride comfort and handling safety. Regardless of its lower performance than the active suspension control system, the semi-active suspension control system has been taking interest because of its absolutely higher performance than passive suspension system. Since the pervious studies have been concentrated mostly on analytic aspect and survey on the internal structure of the shock absorber remain insufficient, the main discourse of this paper is focused on analyzing the nonlinear shock absorber which varies the damping force of semi-active suspension system and the dynamic characteristics of the solenoid valve, a sort of pressure valve, and proposing the design factors of importance.

  • PDF

Self-powered hybrid electromagnetic damper for cable vibration mitigation

  • Jamshidi, Maziar;Chang, C.C.;Bakhshi, Ali
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.285-301
    • /
    • 2017
  • This paper presents the design and the application of a new self-powered hybrid electromagnetic damper that can harvest energy while mitigating the vibration of a structure. The damper is able to switch between an energy harvesting passive mode and a semi-active mode depending on the amount of energy harvested and stored in the battery. The energy harvested in the passive mode resulting from the suppression of vibration is employed to power up the monitoring and electronic components necessary for the semi-active control. This provides a hybrid control capability that is autonomous in terms of its power requirement. The proposed hybrid circuit design provides two possible options for the semi-active control: without energy harvesting and with energy harvesting. The device mechanism and the circuitry that can drive this self-powered electromagnetic damper are described in this paper. The parameters that determine the device feasible force-velocity region are identified and discussed. The effectiveness of this hybrid damper is evaluated through a numerical simulation study on vibration mitigation of a bridge stay cable under wind excitation. It is demonstrated that the proposed hybrid design outperforms the passive case without external power supply. It is also shown that a broader force range, facilitated by decoupled passive and semi-active modes, can improve the vibration performance of the cable.

Experimental and numerical study on the dynamic behavior of a semi-active impact damper

  • Zheng Lu;Mengyao Zhou;Jiawei Zhang;Zhikuang Huang;Sami F. Masri
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.455-467
    • /
    • 2023
  • Impact damper is a passive damping system that controls undesirable vibration with mass block impacting with stops fixed to the excited structure, introducing momentum exchange and energy dissipation. However, harmful momentum exchange may occur in the random excitation increasing structural response. Based on the mechanism of impact damping system, a semi-active impact damper (SAID) with controllable impact timing as well as a semi-active control strategy is proposed to enhance the seismic performance of engineering structures in this paper. Comparative experimental studies were conducted to investigate the damping performances of the passive impact damper and SAID. The extreme working conditions for SAID were also discussed and approaches to enhance the damping effect under high-intensity excitations were proposed. A numerical simulation model of SAID attached to a frame structure was established to further explore the damping mechanism. The experimental and numerical results show that the SAID has better control effect than the traditional passive impact damper and can effectively broaden the damping frequency band. The parametric studies illustrate the mass ratio and impact damping ratio of SAID can significantly influence the vibration control effect by affecting the impact force.

반능동현가장치용 리버스 무단연속가변댐퍼의 모델링 및 동특성 해석 (Modeling and Dynamic Characteristics Analysis of a Continuously Variable Damper with Reverse type Semi-active Suspension.)

  • 박재필;최창림;윤영환;최병근;정용길
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.937-941
    • /
    • 2004
  • Since semi-active suspension systems of automobile, of which suspension damper are controlled actively, exhibit high performance with light system weight, low cost and low energy consumption. From this view point, semi-active suspension systems are greatly expected to be in the mainstream of future controlled suspension systems. In this Paper, mathematical modeling and dynamic characteristics analysis of a reverse continuously variable damper and valve used for semi-active suspension systems are investigated. The mathematical model of piston with valve are proposed by IMAGINE/AMESim in the paper. To verify the mathematical model developed, the dynamic characteristics are simulated by IMAGINE/AMESim and are compared with experimental results. It was confirmed that the developed models represent well the actual system and can be used for control system design.

  • PDF