• Title/Summary/Keyword: Semi-Wedge Combustion Chamber

Search Result 3, Processing Time 0.014 seconds

Effects of Port Shape on Steady Flow Characteristics in an SI Engine with Semi-Wedge Combustion Chamber (2) - Velocity Distribution (2) (반 쐐기형 연소실을 채택한 SI 기관에서 포트형상이 정상유동 특성에 미치는 영향 (2) - 유속분포 (2))

  • Yoon, Inkyoung;Ohm, Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.97-107
    • /
    • 2017
  • This study is the second investigation on the steady flow characteristics of an SI engine with a semi-edge combustion chamber as a function of the port shape with varying evaluation positions. For this purpose, the planar velocity profiles were measured from 1.75B, 1.75 times of bore position apart from the bottom of head, to 6.00B positions using particle - image velocimetry. The flow patterns were examined with both a straight and a helical port. The velocity profiles, streamlines, and centers of swirl were almost the same at the same valve lift regardless of the measuring position, which is quite different from the case of the pent-roof combustion chamber. All the eccentricity values of the straight port were out of distortion criterion 0.15 through the lifts and the position. However, the values of the helical port exceeded the distortion criterion by up to 4 mm lift, but decreased rapidly above the 3.00B position and the 5 mm lift. There always existed a relative offset effect in the evaluation of the swirl coefficient using the PIV method due to the difference of the ideal impulse swirl meter velocity profile assumption, except for the cylinder-center-base estimation that was below 4 mm of the straight port. Finally, it was concluded that taking the center as an evaluation basis and the assumption about the axial velocity profile did not have any qualitative effect on swirl evaluation, but affected the value owing to the detailed profile.

Effects of Port Shape on Steady Flow Characteristics in an SI Engine with Semi-Wedge Combustion Chamber (1) - Velocity Distribution (1) (반 쐐기형 연소실을 채택한 SI 기관에서 포트형상이 정상유동 특성에 미치는 영향 (1) - 유속분포 (1))

  • Kim, Hyeongsig;Ohm, Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.417-427
    • /
    • 2016
  • This paper is the first investigation of the steady flow characteristics of an SI engine with a semi-wedge combustion chamber as a function of the port shape. For this purpose, the planar velocity profiles were measured at the 1.75B position by particle image velocimetry. The flow patterns were examined with both a straight and a helical port. Two swirls were observed up to 4 mm valve lift with the straight port and up to 2 mm with the helical one; however, only one swirl was present after these lifts. The flow characteristics changed suddenly between 4 and 5 mm lift in the straight port; on the other hand, the change with lift was gradual with the helical port - the transition points between flow regimes were different with the port shapes. In addition, the centers of the swirls were relatively far from the cylinder center so that the effect of eccentricity may not be negligible at 1.75B, regardless the shape. The eccentricity values with the straight port were especially high - over 0.5 for all lifts. Finally, real velocities were found to be much lower than those predicted by the assumption of ISM evaluation, with the profiles differing qualitatively as well.

Characteristics of in-cylinder flow near the spark-plug for different engine speeds (엔진속도 변화에 따른 연소실내 Spark Plug 주위의 유동특성 고찰)

  • Seong, Baek-Gyu;Jeon, Gwang-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2289-2297
    • /
    • 1996
  • Flows in the combustion chamber near the spark plug are measured using LDv.A single cylinder DOHC S.I. engine of compression ratio 9.5:1 with a transparent quartz window piston is used. Combustion chamber shape is semi-wedge type. Measured data are analyzed using the ensemble averaged analysis and the cycle resolved analysis which uses FFT Filtering. Turbulent intensity and mean velocity are studied in the main flow direction and the normal to main flow direction as a function of engine speeds. The results shows that the turbulent intensity obtained by the ensemble averaged analysis is greater than that calculated by the cycle resolved analysis. Especially, the ensemble averaged analysis shows increase in turbulence at the end of compression stroke although the cycle resolved analysis shows increase only in the cycle-by-cycle variation with no noticeable increase in turbulence. The mean velocity in the main flow direction increase as engine speed increase. But the mean velocity normal to the main flow does not show such increase. Turbulent intensity in both direction increase in proportion to engine speeds. The magnitude of turbulent intensity is about 0.3 ~ 0.4 times the mean piston speeds at the end of the compression stroke.