• 제목/요약/키워드: Semi-Supervised learning

검색결과 150건 처리시간 0.027초

세미감독형 학습 기법을 사용한 소프트웨어 결함 예측 (Software Fault Prediction using Semi-supervised Learning Methods)

  • 홍의석
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권3호
    • /
    • pp.127-133
    • /
    • 2019
  • 소프트웨어 결함 예측 연구들의 대부분은 라벨 데이터를 훈련 데이터로 사용하는 감독형 모델에 관한 연구들이다. 감독형 모델은 높은 예측 성능을 지니지만 대부분 개발 집단들은 충분한 라벨 데이터를 보유하고 있지 않다. 언라벨 데이터만 훈련에 사용하는 비감독형 모델은 모델 구축이 어렵고 성능이 떨어진다. 훈련 데이터로 라벨 데이터와 언라벨 데이터를 모두 사용하는 세미 감독형 모델은 이들의 문제점을 해결한다. Self-training은 세미 감독형 기법들 중 여러 가정과 제약조건들이 가장 적은 기법이다. 본 논문은 Self-training 알고리즘들을 이용해 여러 모델들을 구현하였으며, Accuracy와 AUC를 이용하여 그들을 평가한 결과 YATSI 모델이 가장 좋은 성능을 보였다.

Semi-Supervised Learning Based Anomaly Detection for License Plate OCR in Real Time Video

  • Kim, Bada;Heo, Junyoung
    • International journal of advanced smart convergence
    • /
    • 제9권1호
    • /
    • pp.113-120
    • /
    • 2020
  • Recently, the license plate OCR system has been commercialized in a variety of fields and preferred utilizing low-cost embedded systems using only cameras. This system has a high recognition rate of about 98% or more for the environments such as parking lots where non-vehicle is restricted; however, the environments where non-vehicle objects are not restricted, the recognition rate is about 50% to 70%. This low performance is due to the changes in the environment by non-vehicle objects in real-time situations that occur anomaly data which is similar to the license plates. In this paper, we implement the appropriate anomaly detection based on semi-supervised learning for the license plate OCR system in the real-time environment where the appearance of non-vehicle objects is not restricted. In the experiment, we compare systems which anomaly detection is not implemented in the preceding research with the proposed system in this paper. As a result, the systems which anomaly detection is not implemented had a recognition rate of 77%; however, the systems with the semi-supervised learning based on anomaly detection had 88% of recognition rate. Using the techniques of anomaly detection based on the semi-supervised learning was effective in detecting anomaly data and it was helpful to improve the recognition rate of real-time situations.

Semi-supervised Multi-view Manifold Discriminant Intact Space Learning

  • Han, Lu;Wu, Fei;Jing, Xiao-Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권9호
    • /
    • pp.4317-4335
    • /
    • 2018
  • Semi-supervised multi-view latent space learning is gaining considerable popularity recently in many machine learning applications due to the high cost and difficulty to obtain the large amount of label information of data. Although some semi-supervised multi-view latent space learning methods have been presented, there is still much space for improvement: 1) How to learn latent discriminant intact feature representations by employing data of multiple views; 2) How to exploit the manifold structure of both labeled and unlabeled point in the learned latent intact space effectively. To address the above issues, we propose an approach called semi-supervised multi-view manifold discriminant intact space learning ($SM^2DIS$) for image classification in this paper. $SM^2DIS$ aims to seek a manifold discriminant intact space for data of different views by making use of both the discriminant information of labeled data and the manifold structure of both labeled and unlabeled data. Experimental results on MNIST, COIL-20, Multi-PIE, and Caltech-101 databases demonstrate the effectiveness and robustness of our proposed approach.

미분류 데이터의 초기예측을 통한 군집기반의 부분지도 학습방법 (A Clustering-based Semi-Supervised Learning through Initial Prediction of Unlabeled Data)

  • 김응구;전치혁
    • 한국경영과학회지
    • /
    • 제33권3호
    • /
    • pp.93-105
    • /
    • 2008
  • Semi-supervised learning uses a small amount of labeled data to predict labels of unlabeled data as well as to improve clustering performance, whereas unsupervised learning analyzes only unlabeled data for clustering purpose. We propose a new clustering-based semi-supervised learning method by reflecting the initial predicted labels of unlabeled data on the objective function. The initial prediction should be done in terms of a discrete probability distribution through a classification method using labeled data. As a result, clusters are formed and labels of unlabeled data are predicted according to the Information of labeled data in the same cluster. We evaluate and compare the performance of the proposed method in terms of classification errors through numerical experiments with blinded labeled data.

준감독 학습 알고리즘을 위한 능동적 레이블 데이터 선택 (Active Selection of Label Data for Semi-Supervised Learning Algorithm)

  • 한지호;박은해;박동철;이윤식;민수영
    • 전기전자학회논문지
    • /
    • 제17권3호
    • /
    • pp.254-259
    • /
    • 2013
  • 본 논문에서는 준감독 학습 알고리즘(Semi-Supervised Learning Algorithm)의 학습데이터에 필요한 소수의 레이블 데이터를 능동적으로 선택하기 위한 무감독경쟁학습 알고리즘인 VCNN(Vector Centroid Neural Network)을 제안한다. 준감독 학습 알고리즘에서 레이블 데이터의 선택은 학습 결과 큰 영향을 미치고, 레이블 데이터를 선택하는데 있어 많은 비용과 전문적인 지식이 필요하다. 본 논문에서 능동적이고 효율적인 레이블 데이터 선택을 검증하기 위하여 UCI database 와 caltech dataset 을 이용하여 실험한 결과, 기존의 레이블 데이터 선택 방법과 비교하여 안정된 분류 결과와 최소의 오차율을 나타냈다.

Semi-supervised learning using similarity and dissimilarity

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권1호
    • /
    • pp.99-105
    • /
    • 2011
  • We propose a semi-supervised learning algorithm based on a form of regularization that incorporates similarity and dissimilarity penalty terms. Our approach uses a graph-based encoding of similarity and dissimilarity. We also present a model-selection method which employs cross-validation techniques to choose hyperparameters which affect the performance of the proposed method. Simulations using two types of dat sets demonstrate that the proposed method is promising.

A Hybrid Selection Method of Helpful Unlabeled Data Applicable for Semi-Supervised Learning Algorithm

  • Le, Thanh-Binh;Kim, Sang-Woon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권4호
    • /
    • pp.234-239
    • /
    • 2014
  • This paper presents an empirical study on selecting a small amount of useful unlabeled data to improve the classification accuracy of semi-supervised learning algorithms. In particular, a hybrid method of unifying the simply recycled selection method and the incrementally-reinforced selection method was considered and evaluated empirically. The experimental results, which were obtained from well-known benchmark data sets using semi-supervised support vector machines, demonstrated that the hybrid method works better than the traditional ones in terms of the classification accuracy.

준지도 학습의 모수 선택에 관한 연구 (Smoothing parameter selection in semi-supervised learning)

  • 석경하
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권4호
    • /
    • pp.993-1000
    • /
    • 2016
  • 반응 값이 없는 자료를 지도학습 (supervised learning)에 사용하는 준지도 학습 (semi-supervised learning)은 분류에 더 많은 관심을 갖는다. 본 연구는 준지도학습을 회귀분석에 적용하는 준지도 회귀함수 추정법을 제안한다. 제안된 방법은 기존의 방법과 형태는 같지만 반응 값이 있는 자료와 없는 자료의 주변분포를 다르게 가정하고, 서로 다른 평활계수를 사용하는 등 좀 더 일반화된 형태를 가진다. 제안된 추정법의 점근분포를 계산하고 점근평균제곱오차를 최소화하는 최적의 평활계수가 가지는 조건을 찾는다. 설명변수의 주변분포에 대한 추정이 잘 이루이지고, 반응 값이 있는 자료와 없는 자료의 크기에 대한 조건을 적절하게 통제할 수 있고, 그리고 평활계수가 적절하게 선택될 수 있다면 라벨없는 자료가 회귀분석에서도 도움을 줄 수 있음을 보인다. 그리고 준지도 분류에서 사용하는 것처럼 반응 값이 없는 자료의 초기추정은 작은 값을 가지는 평활계수를 사용하여 과적합 (overfitting)되도록 하는 것이 좋음을 증명한다.

Asymmetric Semi-Supervised Boosting Scheme for Interactive Image Retrieval

  • Wu, Jun;Lu, Ming-Yu
    • ETRI Journal
    • /
    • 제32권5호
    • /
    • pp.766-773
    • /
    • 2010
  • Support vector machine (SVM) active learning plays a key role in the interactive content-based image retrieval (CBIR) community. However, the regular SVM active learning is challenged by what we call "the small example problem" and "the asymmetric distribution problem." This paper attempts to integrate the merits of semi-supervised learning, ensemble learning, and active learning into the interactive CBIR. Concretely, unlabeled images are exploited to facilitate boosting by helping augment the diversity among base SVM classifiers, and then the learned ensemble model is used to identify the most informative images for active learning. In particular, a bias-weighting mechanism is developed to guide the ensemble model to pay more attention on positive images than negative images. Experiments on 5000 Corel images show that the proposed method yields better retrieval performance by an amount of 0.16 in mean average precision compared to regular SVM active learning, which is more effective than some existing improved variants of SVM active learning.

지능형 교육 시스템의 학습자 분류를 위한 Variational Auto-Encoder 기반 준지도학습 기법 (Variational Auto-Encoder Based Semi-supervised Learning Scheme for Learner Classification in Intelligent Tutoring System)

  • 정승원;손민재;황인준
    • 한국멀티미디어학회논문지
    • /
    • 제22권11호
    • /
    • pp.1251-1258
    • /
    • 2019
  • Intelligent tutoring system enables users to effectively learn by utilizing various artificial intelligence techniques. For instance, it can recommend a proper curriculum or learning method to individual users based on their learning history. To do this effectively, user's characteristics need to be analyzed and classified based on various aspects such as interest, learning ability, and personality. Even though data labeled by the characteristics are required for more accurate classification, it is not easy to acquire enough amount of labeled data due to the labeling cost. On the other hand, unlabeled data should not need labeling process to make a large number of unlabeled data be collected and utilized. In this paper, we propose a semi-supervised learning method based on feedback variational auto-encoder(FVAE), which uses both labeled data and unlabeled data. FVAE is a variation of variational auto-encoder(VAE), where a multi-layer perceptron is added for giving feedback. Using unlabeled data, we train FVAE and fetch the encoder of FVAE. And then, we extract features from labeled data by using the encoder and train classifiers with the extracted features. In the experiments, we proved that FVAE-based semi-supervised learning was superior to VAE-based method in terms with accuracy and F1 score.