• Title/Summary/Keyword: Semi-Solid Alloy

Search Result 110, Processing Time 0.027 seconds

Process Analysis for Rheology Forming Considering Flow and Solidification Phenomena in Lower Solid Fraction (저고상율 소재의 유동 및 응고현상을 고려한 레올로지 성형공정해석)

  • Jung, Young-Jin;Cho, Ho-Sang;Kang, Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.156-164
    • /
    • 2001
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum alloy has been studied. Two-phase fluid flow model to investigate the velocity field and temperature distribution is proposed. The proposed mathematical model is applied to the die shape of the two types. To calculate the velocity and temperature fields during rheology forming process, the earth governing equation correspondent to the liquid and solid region are adapted. Therefore, each numerical models considering the solid and liquid region existing within the semi-solid material have been developed to predict the deflect of rheology forming gnarls. The Arbitrary Boundary Maker And Cell (ABMAC) method is employed to solve the two-phase flow model of the Navier-Stokes equation. Theoretical model on the basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on the liquid and solid viscosity. The liquid viscosity is pure liquid state value, however solid viscosity is considered as a function of the shear rate, solid fraction and power law curves.

  • PDF

Solidification Analysis for Surface Defect Prediction of Rheology Forming Process Considering Flow Phenomena of Liquid and Solid Region (액상과 고상의 유동현상을 고려한 레오로지 성형공정의 표면결함예측을 위한 응고해석)

  • Seo, Pan-Ki;Jung, Young-Jin;Kang, Chung-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.1971-1981
    • /
    • 2002
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum alloy has been studied. Two-phase flow model to investigate the velocity field and temperature distribution is proposed. The proposed mathematical model is applied to the die shape of the two types. To calculate the velocities and temperature fields during rheology forming process, the each governing equations correspondent to the liquid and solid region are adapted. Therefore, each numerical model considering the solid and liquid coexisting region within the semi-solid material have been developed to predict the defects of rheology forming parts. The Arbitrary Boundary Maker And Cell(ABMAC) method is employed to solve the two-Phase flow model of the Navier-Stokes equation. Theoretical model basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on using the liquid and solid viscosity. The Liquid viscosity is pure liquid state value, however solid viscosity is considered as a function of the shear rate, solid fraction and power law curves.

Microstructure of Semi-solid A356 Alloys made Using Cooling Plate (냉각판을 이용한 반응고 A356합금의 미세조직)

  • 엄정필;김득규;윤병은;임수근
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.148-159
    • /
    • 1997
  • In this study, microstructure, size of primary $\alpha$, solid fraction and hardness of A356 Al alloy, were investigated. Semi-solid A356 allos were obtained by semi-solid continuous casting apparatus consists of melting furnace, formation apparatus of granular primary $\alpha$ and continuous casting apparatus. Size of promary $\alpha$ and fraction solid were decreased with decreasing temperature, and with increasing volume of cooling water. At the cooling water temperature of 15$^{\circ}C$ and cooling water volume of 18.2$\ell$/min, the sizes of primary $\alpha$ phases were decreased up to 40${\mu}{\textrm}{m}$, and fraction solid was 0.68.

  • PDF

Process Control and Thixoforming of Cu Rotor for High Efficiency Motors (고효율 전동기용 Cu Rotor의 반응고 성형과 공정변수 제어)

  • Jung, W. S.;Lee, S. Y.;Shin, P. W.
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.642-648
    • /
    • 2005
  • Rotor in small-medium induction motor has been usually manufactured by aluminum diecasting. In order to improve the efficiency of induction motors, newly developed Cu-Ca alloys have been investigated. The electrical conductivity in the Cu alloys containing Ca less than $1.0wt\%$ was higher than $80\%$ IACS. Cu-Ca alloy is desirable for the thixoforming process because it has wide semi-solid range over $150^{\circ}C$. In this study, Cu-rotor with thixoforming process was developed to replace the conventional aluminum diecasting rotor. Analysis was performed for the microstructure of thixoforming rotor. Effect of incomplete filling on the efficiency of induction motor was discussed.

Process Control and Thixoforming Cu Rotor for High Efficiency Motors (고효율 전동기용 Cu Rotor의 반응고 성형과 공정변수 제어)

  • Jung W. S.;Lee S. Y.;Shin P. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.233-236
    • /
    • 2005
  • Rotor in small-medium induction motor has been usually manufactured by aluminum diecasting. In order to improve efficiency of induction motors, newly developed Cu-Ca alloys have been investigated. The electrical conductivity in the Cu alloys containing Ca less than $1.0wt\%$ was higher than $80\%$ IACS. Cu-Ca alloy is desirable for the thixoforming process because it has wide semi-solid range over $150^{\circ}C$. In this study, Cu-rotor with thixoforming process was developed to replace the conventional aluminum diecasting rotor. Analysis microstructure of thixoforming rotor. effect of incomplete filling defect on the efficiency of induction motor was discussed.

  • PDF

Study on the Production of Aluminum Components by Direct Rheo Die Casting with Electromagnetic Stirrer

  • Roh, Joong-Suk;Heo, Min;Jin, Chul-Kyu;Park, Jin Ha;Kang, Chung-Gil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_1
    • /
    • pp.541-547
    • /
    • 2020
  • This paper relates a rheo die casting using electromagnetic force, which is one of the representative semi-solid methods for aluminum. The most important factors in electromagnetic stirring would be the melt temperature, sleeve temperature, electromagnetic force, and input time. The effect of the temperature of molten alloy on the direct rheo-casting is assessed in this study. The temperature of the molten alloy is set to 590 ℃ with a solidification of 40%, 600 ℃ with 30%, and 610℃ with less than 20%. Under the condition of 590 ℃ with a solidification of 40%, the whole molten alloy is solidified, causing non-forming during forming process. Meanwhile, under the condition of 600 ℃, where the solidification was 30%, appropriate amount of molten alloy is solidified, filled well into the mold, resulting in good forming, while at 610 ℃ with the solidification of 20%, the molten alloy is not sufficiently solidified and scattered away. The investigation of the defects inside the product with the help of the X-ray equipment shows that the electromagnetic stirring at 590 ℃ with a solidification of 30% produces many air-pores inside the product.

Numerical and Experimental Study of Semi-solid A356 Aluminum Alloy in Rheo-Forging process

  • Kim, H.H.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.371-374
    • /
    • 2009
  • Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D. Samples of metal parts were subsequently fabricated by using hydraulic press machinery.

  • PDF

Microstructural Evolution during Isothermal Heating and Thixoformability of Mg-5%Al Alloy (Mg-5%Al합금의 등온가열에 따른 미세조직변화 및 반응고 성형성)

  • Kim, Jeong-Min;HwangBo, Hyun-Seok;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of Korea Foundry Society
    • /
    • v.21 no.4
    • /
    • pp.246-252
    • /
    • 2001
  • Variation in the microstructure of Mg-5%Al semi-solid slurry during isothermal heating was investigated in relation to initial microstructure, holding time, and holding temperature. Specimens with three different initial microstructures were isothermally heated. Dendritic structure in as-cast ingot was decomposed into solid globules in the semi-solid slurry during isothermal holding, while in the recrystallized specimens prepared by extrusion or rolling the size of solid particles was continuously increased during the heating. Effects of mold temperature and liquid fraction of slurry on the mold filling ability were also studied. Very thin section (0.4 mm) could be successfully filled up to 50 mm by 60% liquid slurry when the mold was heated to $600^{\circ}C$.

  • PDF

The Effect of Electromagnetic Stirring on the Semi-Solid Microstructure of Cu-0.15wt%Zr Alloy (전자교반에 의한 Cu-0.5wt%Zr 합금의 반응고 조직제어에 관한 연구)

  • Lim, Sung-Chul;Lee, Heung-Bok;Kim, Kyung-Hoon;Kwon, Hyuk-Chon;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.26 no.1
    • /
    • pp.40-45
    • /
    • 2006
  • Most of the work reported concerned the semi-solid processing of low melting point alloys, and in particular light alloys of aluminum and magnesium. The purpose of this paper is to develop a semi-solid microstructure of Cu alloys using electromagnetic stirring applicable for squirrel cage rotor of induction motor. The size of primary solid particle and the degree of sphericity as a function of the variation in cooling rate, stirring speed, and holding time were observed. By applying electromagnetic stirring, primary solid particles became finer and rounder relative to as-cast sample. As the input frequency increased from 30 to 40 Hz, particle size decreased. The size of primary solid particle was found to be decreased with increasing cooling rate. Also, it decreased with stirring up to 3 minutes but increased above that point. The degree of sphericity became closer to be 1 with hold time. Semi-solid microstructure of Cu alloys, one of the high melting point alloys, could be controlled by electromagnetic stirring.

Microstructure Evolution of Semi Solid AZ31+(Ca) Magnesium Alloys during Reheating Process (Ca첨가 반응고 AZ31 마그네슘 합금의 재가열에 따른 미세조직 변화)

  • Kim, Hee-Kyung;Seong, Bong-Hak;Van, Guen-Ho;Kim, Dae-Hwan;Seong, Yeong-Rok;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.75-80
    • /
    • 2012
  • In this study, we are aimed to prevent grain growth of semi-solid AZ31 magnesium alloys during reheating process. The semi-solid AZ31+(Ca) billets were investigated by using metallographic analysis, X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy in order to elucidate the effect of Ca addition during reheating process. The grain growth of semi-solid AZ31+(Ca) billet was reduced with increasing Ca content during reheating. The grain size of AZ31+(Ca) billet decreased with increasing volume fraction of Al2Ca particles. The grain growth rate constant K calculated by Oswald ripening LSW theory in AZ31+1.5wt.% Ca billet was the lowest 129.