• 제목/요약/키워드: Semi-Circular Concave Surface

검색결과 3건 처리시간 0.019초

반원 오목면에 분사되는 제트충돌 냉각에 관한 실험적 연구 (An Experimental Study of Jet Impingement Cooling on the Semi-Circular Concave Surface)

  • 양근영;최만수;이준식
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.1083-1094
    • /
    • 1995
  • An experimental study has been carried out for jet-impingement cooling on the semi-circular concave surface. Two different nozzles(round edged nozzle and rectangular edged nozzle) are utilized and heat transfer coefficients on the concave surface have been measured under a constant heat flux condition. The characteristics of heat transfer has been discussed in conjunction with measured jet flow. Velocity and turbulence intensity of free jets issuing from two different nozzles have been measured by Laser Doppler Anemometry and theromocouple measurements have been done for temperatures on the concave surface. The effects of the nozzle shape, the distance between the nozzle exit and the stagnation point of the surface and the nozzle exit velocity on heat transfer were studied.

제트충돌냉각되는 반원 오목면에서 열전달 및 유체유동에 관한 실험적 연구 (An Experimental Study on Heat Transfer and Fluid Flow on the Semi-Circular Concave Surface Cooled by Jet Impingement)

  • 유한성;양근영;이준식
    • 대한기계학회논문집B
    • /
    • 제20권9호
    • /
    • pp.2991-3006
    • /
    • 1996
  • An experimental study of jet flow and heat transfer has been carried out for the jet impingement cooling on a semi-circular concave surface. For the jet impingement on the concave surface, three different regions-free jet region, stagnation region, and wall jet flow region-exist, and the distributions of mean velocity and fluctuating velocity for each region have been measured by Laser Doppler Velocimeter. Of particular interests are the effects of jet Reynolds number, the distance between the nozzle exit and cooling surface apex, and the distance from the stagnation point in the circumferential direction. The resulting characteristics of heat transfer at the stagnation point and the variation of heat transfer along the circumferential direction including the existence of secondary peak have been explained in conjunction with measured impinge jet flow.

터빈블레이드의 냉각에서 충돌제트에 의해 변화되는 유동 및 열전달 특성에 관한 수치해석적 연구 (A numerical study of flow and heat transfer characteristics varied by impingement jet in turbine blade cooling)

  • 이정희;김신일;유홍선;최영기
    • 대한기계학회논문집B
    • /
    • 제20권12호
    • /
    • pp.4013-4026
    • /
    • 1996
  • A numerical simulation has been carried out for the jet impinging on a flat plate and a semi-circular concave surface. In this computation finite volume method was employed to solve the full Navier-Stokes equation based on a non-orthogonal coordinate with non staggered variable arrangement. The standard k-.epsilon. turbulent model and low Reynolds number k-.epsilon. model(Launder-Sharmar model) with Yap's correction were adapted. The accuracy of the numerical calculations were compared with various experimental data reported in the literature and showed good predictions of centerline velocity decay, wall pressure distribution and skin friction. For the jet impingement on a semi-circular concave surface, potential core length was calculated for two different nozzle(round edged nozzle and rectangular edged nozzle) to consider effects of the nozzle shape. The result showed that round edged nozzle had longer potential core length than rectangular edged nozzle for the same condition. Heat transfer rate along the concave surface with constant heat flux was calculated for various nozzle exit to surface distance(H/B) in the condition of same jet velocity. The maximum local Nusselt number at the stagnation point occurred at H/B = 8 where the centerline turbulent intensity had maximum value. The predicted Nusselt number showed good agreement with the experimental data at the stagnation point. However heat transfer predictions along the downstream were underestimated. This results suggest that the improved turbulence modeling is required.