• 제목/요약/키워드: Semi-Active Suspensions

검색결과 24건 처리시간 0.023초

DEVELOPMENT OF A REVERSE CONTINUOUS VARIABLE DAMPER FOR SEMI-ACTIVE SUSPENSION

  • Yoon, Young-Hwan;Choi, Myung-Jin;Kim, Kyung-Hoon
    • International Journal of Automotive Technology
    • /
    • 제3권1호
    • /
    • pp.27-32
    • /
    • 2002
  • Semi-active suspension systems are greatly expected to be in the mainstream of future controlled suspensions fur passenger cars. In this study, a continuous variable damper for a passenger car suspension is developed. It is controlled actively and exhibits high performance with light weight, low cost, and low energy consumption. To get fast response of the damper, reverse damping mechanism is adapted, and to get small pressure change rate after blow-off, a pilot controlled proportional valve is designed and analyzed. The reverse continuous variable damper is designed as a HS-SH damper which offers good body control with reduced transferred input force from tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping force can be tuned independently, of which variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-offbecomes smooth when the fixed orifice size increases. Damping forces are measured with the change of the solenoid current at the different piston velocities to confirm the maximum hysteresis of 20N, linearity, and variance of damping farce. The damping farce variance is wide and continuous, and is controlled by the spoof opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through real car test.

반능동 서스펜션용 MR CDC 댐퍼의 자기회로 설계기법 (Magnetic Circuit Design Methodology of MR CDC Dampers for Semi-Active Suspensions)

  • 박재우;정영대
    • 한국정밀공학회지
    • /
    • 제25권10호
    • /
    • pp.48-57
    • /
    • 2008
  • MR Fluid, one of functional fluids, is developed for the application to automobile products. MR CDC damper using MR fluid has following principles. When ar electric current is applied to the solenoid, apparent viscosity of MR fluid passing through the annular gap which acts as magnetic circuits varies directly as the intensity of the current. These devices have a simple structure and excellent lime response characteristics, emerging as the alternatives of the conventional semi-active suspension systems. In this study, a design procedure of the magnetic circuit through the solenoid fore and the flux ring functioning as a magnetic path is investigated so as to optimize the design and performance of MR CDC dampers for the vehicles. In addition, an operating point on the B-H curve, the magnetization according to the variation in the annular gap, the pole piece width and the density of MR fluid are studied to design the optimal piston head within the restrained dimension range.

리버스 무단 댐퍼용 연속가변밸브의 튜닝 파라미터에 관한 연구 (A Study on the Tuning Parameter of Continuous Variable Valve for Reverse Continuous Damper)

  • 윤영환;최명진;유송민
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.192-200
    • /
    • 2002
  • Semi-active suspension systems are greatly expected to be in the mainstream of future controlled suspensions for passenger cars. In this study, a continuous variable damper for a passenger car suspension is developed, which is controlled actively and exhibits high performance with light weight, low cost, and low energy consumption. To get fast response of the damper, reverse damping mechanism is adapted, and to get small pressure change rate after blow-off, a pilot controlled proportional valve is designed and analyzed. The reverse continuous variable damper is designed as a HS-SH damper that offers good body control with reduced transferred input force from tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping force can be tuned independently, of which variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-off becomes smooth when the fixed orifice size increases, which means that the blow-off slope is controllable using the fixed orifice size. The damping force variance is wide and continuous, and is controlled by the spool opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through real car test.

수정된 스카이훅 제어기를 적용한 회전형 현가장치 차량의 차체진동 저감 (Vibration Reduction Technique for Rotating Suspension Vehicles with a Modified Skyhook Controller)

  • 정사무엘;유완석
    • 대한기계학회논문집A
    • /
    • 제37권1호
    • /
    • pp.25-30
    • /
    • 2013
  • 군용 견마로봇차량은 전시 임무수행간 야지를 주행하게 되는데, 이때 발생하는 지속적인 충격에 의한 차체의 진동은 내부 구성품에 손상을 초래할 수 있다. 현재 차체 진동저감을 위한 제어의 수단으로 능동 또는 반능동 현가장치을 사용한 많은 연구가 진행 되고 있다. 본 연구에서는 기존의 반능동 현가장치와 더불어 $6{\times}6$ 차량의 회전형 현가장치와 독립적인 구동제어에 의한 진동저감 기법을 제안한다. 진동 제어기로는 스카이훅의 수정기법 중의 하나인 SH-ADD 를 적용하였다. ISO E 등급의 노면을 주행노면으로 선정하였으며, 시뮬레이션은 ADAMS Control 과 Matlab Simulink 를 연동하여 수행하였다. 야지에서의 내부장비의 피로누적에 초점을 두어 주행 제어조건에 따른 RMS 수치로서 결과를 비교 및 분석하였다.