• 제목/요약/키워드: Semi- active

검색결과 645건 처리시간 0.024초

Job Shop 일정계획 문제 풀이를 위한 유전 알고리즘의 복호화 방법 (The Decoding Approaches of Genetic Algorithm for Job Shop Scheduling Problem)

  • 김준우
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제25권4호
    • /
    • pp.105-119
    • /
    • 2016
  • Purpose 생산 일정계획 문제의 해법들은 일반적으로 총처리시간이 짧은 active 스케줄에 초점을 맞추어 해를 탐색하는 경우가 많다. 그러나 active 스케줄은 semi active 스케줄에 비해 생성하는 것이 까다롭기 때문에, 일정계획을 생성하는데 소요되는 계산 비용을 감안하면 semi active 스케줄을 적절히 활용하는 것이 도움이 될 수 있다. 이에, 본 논문에서는 동일한 생산 일정계획 문제에 active 스케줄기반 탐색 방법과 semi active 스케줄 기반 탐색 방법을 적용함으로써 이들의 성능을 비교해보고자 하였다. Design/methodology/approach 각 공정들의 작업장 할당 순서를 의미하는 permutation encoding 기반 유전 알고리즘을 고전적인 job shop 일정계획 문제에 적용하기 위해 본 논문에서는 active 스케줄 복호화 및 semi active 스케줄 복호화의 두 가지 복호화 방법을 소개하였으며, 이들은 공정들의 순열로부터 실행가능한 스케줄을 얻는데 사용되었다. Findings semi active 스케줄 기반 유전 알고리즘은 active 스케줄 기반 유전 알고리즘에 비해 최적해를 탐색하는데 소요되는 반복 횟수가 좀 더 많은 경향이 있었으나, 알고리즘 실행 시간을 훨씬 짧았다. 나아가, semi active 스케줄 복호화는 그 절차가 단순하여 이해하고 구현하기 용이하다는 장점이 있었다. 따라서, 효과적인 해 탐색 전략이 주어지는 경우에는 semi active 스케줄에 기반한 해법이 일정계획 문제 풀이에 도움이 될 수도 있을 것으로 보여진다.

전차 모델에 대한 반능동 현가장치의 적용에 대한 연구 (A Study on the Application of Semi-active Suspension System to a 3-D Full Vehicle Model)

  • 방범석;백윤수;박영필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.938-944
    • /
    • 1994
  • Active damping has been shown to offer increased suspension performance in terms of vehicle isolation, suspension packaging, and road-tire contract force. Many semi-active damping strategies have been introduced to approximate the response of active damping with the modulation of passive damping parameters. This study investigates the characteristics of semi-active suspension control through the simulation of passive, skyhook active, and semi-active damping models. A quarter car model is studied with the conrolled damping replacing both passive and active damping. A new semi-active scheme is suggested to eliminate the abrupt changes in semi-active damping force. It is shown that the new strategy performs almost identically to the so called "force controlled" semi-active law without steep changes in damping force or body acceleration.eleration.

  • PDF

An innovative hardware emulated simple passive semi-active controller for vibration control of MR dampers

  • Zhang, Jianqiu;Agrawal, Anil K.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.831-846
    • /
    • 2015
  • Magneto-Rheological (MR) dampers are being used increasingly because of their adaptability to control algorithms and reliability of passive systems. In this paper, an extensive investigation on performance of MR dampers in semi-active and passive modes has been carried out. It is observed that the overall energy dissipation by MR dampers in passive-on modes is higher than that in semi-active modes for most of the competitive semi-active controllers. Based on the energy dissipation pattern, a novel semi-active controller, termed as "Simple Passive Semi-Active Controller", has been proposed for MR dampers. This controller can be emulated by a simple passive hardware proposed in this paper. The proposed concept of controller "hardware emulation" is innovative and can also be implemented for other semi-active devices for control algorithms of certain form. The effectiveness and reliability of the proposed controller has been investigated extensively through numerical simulations. It has been demonstrated that the proposed controller is competitive to or more effective than other widely used / investigated semi-active controllers.

Probabilistic behavior of semi-active isolated buildings under pulse-like earthquakes

  • Oncu-Davas, Seda;Alhan, Cenk
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.227-242
    • /
    • 2019
  • Seismic isolation systems employ structural control that protect both buildings and vibration-sensitive contents from destructive effects of earthquakes. Structural control is divided into three main groups: passive, active, and semi-active. Among them, semi-active isolation systems, which can reduce floor displacements and accelerations concurrently, has gained importance in recent years since they don't require large power or pose stability problems like active ones. However, their seismic performance may vary depending on the variations that may be observed in the mechanical properties of semi-active devices and/or seismic isolators. Uncertainties relating to isolators can arise from variations in geometry, boundary conditions, material behavior, or temperature, or aging whereas those relating to semi-active control devices can be due to thermal changes, inefficiencies in calibrations, manufacturing errors, etc. For a more realistic evaluation of the seismic behavior of semi-active isolated buildings, such uncertainties must be taken into account. Here, the probabilistic behavior of semi-active isolated buildings under historical pulse-like near-fault earthquakes is evaluated in terms of their performance in preserving structural integrity and protecting vibration-sensitive contents considering aforementioned uncertainties via Monte-Carlo simulations of 3-story and 9-story semi-active isolated benchmark buildings. The results are presented in the form of fragility curves and probability of failure profiles.

A semi-active stochastic optimal control strategy for nonlinear structural systems with MR dampers

  • Ying, Z.G.;Ni, Y.Q.;Ko, J.M.
    • Smart Structures and Systems
    • /
    • 제5권1호
    • /
    • pp.69-79
    • /
    • 2009
  • A non-clipped semi-active stochastic optimal control strategy for nonlinear structural systems with MR dampers is developed based on the stochastic averaging method and stochastic dynamical programming principle. A nonlinear stochastic control structure is first modeled as a semi-actively controlled, stochastically excited and dissipated Hamiltonian system. The control force of an MR damper is separated into passive and semi-active parts. The passive control force components, coupled in structural mode space, are incorporated in the drift coefficients by directly using the stochastic averaging method. Then the stochastic dynamical programming principle is applied to establish a dynamical programming equation, from which the semi-active optimal control law is determined and implementable by MR dampers without clipping in terms of the Bingham model. Under the condition on the control performance function given in section 3, the expressions of nonlinear and linear non-clipped semi-active optimal control force components are obtained as well as the non-clipped semi-active LQG control force, and thus the value function and semi-active nonlinear optimal control force are actually existent according to the developed strategy. An example of the controlled stochastic hysteretic column is given to illustrate the application and effectiveness of the developed semi-active optimal control strategy.

반능동형 오리피스 유체댐퍼의 성능 실험 (Experimental Study on the Performance of a Semi-Active Orificed Fluid Damper)

  • 문석준;김병현;정종안
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.387-394
    • /
    • 2003
  • A compromise between passive and active control systems has been developed recently in the form of semi-active control systems. Semi-active control systems maintain the reliability of passive control systems while taking advantage of the adjustability of an active control system. This paper presents the results of an experimental study to evaluate the performance of a semi-active orificed fluid damper. The semi-active orificed fluid damper considered is a two-stage damper with normally open solenoid valve. Through a series of experimental tests, characteristics and performance of the damper is investigated.

  • PDF

반능동 현가시스템의 Robust 제어 법칙 (A Robust Semi-active Suspension Control Law)

  • 이경수;서명원;오태일
    • 한국자동차공학회논문집
    • /
    • 제2권6호
    • /
    • pp.117-126
    • /
    • 1994
  • This paper deals with a robust semi-active control algorithm which is applicable to a semi-active suspension with a multi-state damper. Since the controllable damping rates are discrete in case of a multi-state semi-active damper, the desired damping rate can not be produced exactly even if force-velocity relations of a multi-state semi-active damper is completely known. In addition, damping characteristics of the semi-active dampers are different from damper to damper. A robust nonlinear control law based on sliding control is developed. The main objective of the proposed control strategies is to improve ride quality by tracking the desired active force with a multi-state damper of which the force-velocity relations are "not" completely known. The performance of th proposed semi-active control law is numerically compared to those of the control law based on a bilinear model and a passive suspension. The proposed control algorithm is robust to nonlinear characteristics and uncertainty of the force-Velocity relations of multi-state dampers.

  • PDF

협궤 차량용 준능동형 현가 시스템 설계의 시험적 연구 (Experimental Study of Design for Semi - Active suspension system for Railway Vehicle with narrow gauge)

  • 이남진;김철근;남학기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.811-815
    • /
    • 2005
  • Traditional passive suspension has limitations to meet the required specifications of high level trains, and so Active suspension system is proposed to meet the requirements with active components which could be controlled by external signal for optimized behavior of train. Active suspension is to be divided by Full active suspension and Semi-active suspension whether using the external power source or not, and though the performance of Semi-Active suspension is worse than Full one. Semi-active suspension is focused with its effectiveness per cost. Semi-Active suspension system consists of sensors, ECU (electrical control unit), and variable damper, which are to be designed to be fit for train system. And the software of ECU is to be developed for to be suited to its dynamic behavior through simulation result calculated by proven model. In this experimental study, the hardware and software of semi-active suspension system is to be realized and its performance for improvement of ride quality to be confirmed through roller rig test.

  • PDF

Influence of Semi-Active Suspension on Running Safety of Vehicles

  • Liu, Hong-You;Yu, Da-Lian
    • International Journal of Railway
    • /
    • 제2권4호
    • /
    • pp.147-151
    • /
    • 2009
  • Railway vehicles equipped with semi-active suspension system can improve the ride quality of car bodies. Semi-active suspension system is usually applied onto high speed train, and therefore higher running safety requirement is proposed. The influence of semi-active suspension system on safety of vehicles running on straight line and curve line is studied, and the influences of sky hook damping coefficient and system time-delay on operation safety of cars fitted with semiactive suspension system is analyzed. The results show that the vehicles equipped with semi-active suspension system, not only the vibration of car body is decreased, it can also give little influence on running safety of cars, as a result, it will not endanger the running safety of cars.

  • PDF

Semi-active control of seismic response of a building using MR fluid-based tuned mass damper

  • Esteki, Kambiz;Bagchi, Ashutosh;Sedaghati, Ramin
    • Smart Structures and Systems
    • /
    • 제16권5호
    • /
    • pp.807-833
    • /
    • 2015
  • While tuned mass dampers are found to be effective in suppressing vibration in a tall building, integrating it with a semi-active control system enables it to perform more efficiently. In this paper a forty-story tall steel-frame building designed according to the Canadian standard, has been studied with and without semi-active and passive tuned mass dampers. The building is assumed to be located in the Vancouver, Canada. A magneto-rheological fluid based semi-active tuned mass damper has been optimally designed to suppress the vibration of the structure against seismic excitation, and an appropriate control procedure has been implemented to optimize the building's semi-active tuned mass system to reduce the seismic response. Furthermore, the control system parameters have been adjusted to yield the maximum reduction in the structural displacements at different floor levels. The response of the structure has been studied with a variety of ground motions with low, medium and high frequency contents to investigate the performance of the semi-active tuned mass damper in comparison to that of a passive tuned mass damper. It has been shown that the semi-active control system modifies structural response more effectively than the classic passive tuned mass damper in both mitigation of maximum displacement and reduction of the settling time of the building.