• Title/Summary/Keyword: Semelparous reproduction

Search Result 2, Processing Time 0.016 seconds

Evolution of Social Life in Wood-Eating Cockroaches (Cryptocercus spp.) : Effects of the Winter Climate on the Evolution of Subsociality

  • Park, Yung-Chul;Choe, Jae-Chun
    • Journal of Ecology and Environment
    • /
    • v.31 no.2
    • /
    • pp.97-105
    • /
    • 2008
  • Subsocial behavior of the genus Cryptocercus cockroaches has been believed as primitive traits of termite eusociality. Thus, it has been believed that understanding Cryptocercus subsociality is a pre-requisite stage to infer evolutionary route of the eusociality in termites. Woodroaches of Cryptocercus are also well known because of its peculiar characteristics including adults living monogamously in pairs, semelparous reproduction, xylophagy, obligatory association between adults and their offspring, slow development, and anal trophallaxis by adults. Based on the previously accumulated data, we try to understand two major components of Cryptocercus life history, development and reproduction. We hypothesize that harsh winter and length of winter might be one of the main causes driving the appearance of the delayed development and semelparous reproduction in Cryptocercus life history.

Distribution and synchronized massive flowering of Sasa borealis in the forests of Korean National Parks

  • Cho, Soyeon;Kim, Youngjin;Choung, Yeonsook
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.308-316
    • /
    • 2018
  • Background: Genus Sasa, dwarf bamboos, are considered to be species that lower biodiversity in the temperate forests of East Asia. Although they have a long interval, they, the monocarpic species, have a unique characteristic of large-scale synchronized flowering. Therefore, once they have flowered and then declined, it may be an opportunity for suppressed surrounding species. A previous study reported that Sasa borealis showed specialized flowering nationwide with a peak in 2015. However, this was based on data from a social network service and field survey at Mt. Jeombong. Therefore, we investigated S. borealis in the forests of five national parks in order to determine whether this rare synchronized flowering occurred nationwide, as well as its spatial distribution. Results: We found a total of 436 patches under the closed canopy of Quercus mongolica-dominated deciduous forests in the surveyed transects from the five national parks. Of these patches, 75% occupied a whole slope area, resulting in an enormous area. The patch area tended to be larger in the southern parks. Half (219 patches) of the patches flowered massively. Among them, 76% bloomed in 2015, which was consistent with the results of the previous report. The flowering rate varied from park to park with that of Mt. Seorak being the highest. The culms of the flowering patches were significantly taller (F = 93.640, p < 0.000) and thicker (F = 61.172, p < 0.000). Following the event, the culms of the flowering patches declined, providing a good opportunity for the suppressed plant species. The concurrent massive flowering of the mature patches was believed to be triggered by some stress such as a spring drought. Conclusion: We confirmed that the rare synchronized flowering of S. borealis occurred with a peak in 2015 nationwide. In addition, we explored that S. borealis not only monopolized an enormous area, but also dominated the floors of the late-successional Q. mongolica-dominated deciduous forests. This presents a major problem for Korean forests. As it declined simultaneously after flowering, there are both possibilities of forest regeneration or resettlement of S. borealis by massively produced seeds.