• 제목/요약/키워드: Semantic-Based Image Retrieval

검색결과 59건 처리시간 0.021초

의미기반 전자 카탈로그 이미지 검색을 위한 XML 데이타베이스 시스템 구현 (An Implementation of XML Database System for Semantic-Based E-Catalog Image Retrieval)

  • 홍성용;나연묵
    • 한국멀티미디어학회논문지
    • /
    • 제7권9호
    • /
    • pp.1219-1232
    • /
    • 2004
  • 최근 e-비즈니스나 인터넷 쇼핑몰 사이트에서 는 많은 양의 상품 이미지 정보와 컨텐츠를 취급하고 있으며 ,이로 인하여 이미지에 대한 효율적인 의미기반 검색의 필요성이 대두되고 있다. 본 논문에서는 XML과 퍼지기술을 이용하여 웹상의 상품 이미지를 의미적으로 검색할 수 있는 시스템에 대해 설명한다. 상품 카탈로그와 같은 다중 객체를 보유하고 있는 이미지에 대하여 의미 기반 검색을 수행할 수 있도록 상품 정보나 의미등의 메타데이타를 표현하는 다계층 메타데이타 구조를 사용한다. 이미지에 대한 의미기반 검색을 수행할 수 있도록 하기 위해 메타데이타를 저장하기 위한 XML 데이타베이스를 설계하고 퍼지 데이타를 적용할 수 있는 방법을 연구하였다. 본 논문에서 제시한 시스템은 이미지에 대한 메타데이타를 이용하여 퍼지 데이터를 자동 생성하고, 생성된 퍼지 데이타를 의미기반 이미지 검색에 사용한다. 따라서 의미기반 상품 이미지 검색에 대하여 사용자의 검색질의에 대한 정확성과 만족도를 증대 시킬 수 있다.

  • PDF

Deep Hashing for Semi-supervised Content Based Image Retrieval

  • Bashir, Muhammad Khawar;Saleem, Yasir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.3790-3803
    • /
    • 2018
  • Content-based image retrieval is an approach used to query images based on their semantics. Semantic based retrieval has its application in all fields including medicine, space, computing etc. Semantically generated binary hash codes can improve content-based image retrieval. These semantic labels / binary hash codes can be generated from unlabeled data using convolutional autoencoders. Proposed approach uses semi-supervised deep hashing with semantic learning and binary code generation by minimizing the objective function. Convolutional autoencoders are basis to extract semantic features due to its property of image generation from low level semantic representations. These representations of images are more effective than simple feature extraction and can preserve better semantic information. Proposed activation and loss functions helped to minimize classification error and produce better hash codes. Most widely used datasets have been used for verification of this approach that outperforms the existing methods.

An interactive image retrieval system: from symbolic to semantic

  • Lan Le Thi;Boucher Alain
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.427-434
    • /
    • 2004
  • In this paper, we present a overview of content-based image retrieval (CBIR) systems: its results and its problems. We propose our CBIR system currently based on color and texture. From the CBIR systems. we discuss the way to add semantic values in image retrieval systems. There are 3 ways for adding them: concept definition, machine learning and man-machine interaction. Along with this we introduce our preliminary results and discuss them in the goal of reaching semantic retrieval. Different result representation schemes are presented. At last, we present our work to build a complete annotated image database and our image annotaion program.

  • PDF

Text-based Image Indexing and Retrieval using Formal Concept Analysis

  • Ahmad, Imran Shafiq
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제2권3호
    • /
    • pp.150-170
    • /
    • 2008
  • In recent years, main focus of research on image retrieval techniques is on content-based image retrieval. Text-based image retrieval schemes, on the other hand, provide semantic support and efficient retrieval of matching images. In this paper, based on Formal Concept Analysis (FCA), we propose a new image indexing and retrieval technique. The proposed scheme uses keywords and textual annotations and provides semantic support with fast retrieval of images. Retrieval efficiency in this scheme is independent of the number of images in the database and depends only on the number of attributes. This scheme provides dynamic support for addition of new images in the database and can be adopted to find images with any number of matching attributes.

Interactive Semantic Image Retrieval

  • Patil, Pushpa B.;Kokare, Manesh B.
    • Journal of Information Processing Systems
    • /
    • 제9권3호
    • /
    • pp.349-364
    • /
    • 2013
  • The big challenge in current content-based image retrieval systems is to reduce the semantic gap between the low level-features and high-level concepts. In this paper, we have proposed a novel framework for efficient image retrieval to improve the retrieval results significantly as a means to addressing this problem. In our proposed method, we first extracted a strong set of image features by using the dual-tree rotated complex wavelet filters (DT-RCWF) and dual tree-complex wavelet transform (DT-CWT) jointly, which obtains features in 12 different directions. Second, we presented a relevance feedback (RF) framework for efficient image retrieval by employing a support vector machine (SVM), which learns the semantic relationship among images using the knowledge, based on the user interaction. Extensive experiments show that there is a significant improvement in retrieval performance with the proposed method using SVMRF compared with the retrieval performance without RF. The proposed method improves retrieval performance from 78.5% to 92.29% on the texture database in terms of retrieval accuracy and from 57.20% to 94.2% on the Corel image database, in terms of precision in a much lower number of iterations.

Using Context Information to Improve Retrieval Accuracy in Content-Based Image Retrieval Systems

  • Hejazi, Mahmoud R.;Woo, Woon-Tack;Ho, Yo-Sung
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.926-930
    • /
    • 2006
  • Current image retrieval techniques have shortcomings that make it difficult to search for images based on a semantic understanding of what the image is about. Since an image is normally associated with multiple contexts (e.g. when and where a picture was taken,) the knowledge of these contexts can enhance the quantity of semantic understanding of an image. In this paper, we present a context-aware image retrieval system, which uses the context information to infer a kind of metadata for the captured images as well as images in different collections and databases. Experimental results show that using these kinds of information can not only significantly increase the retrieval accuracy in conventional content-based image retrieval systems but decrease the problems arise by manual annotation in text-based image retrieval systems as well.

  • PDF

시맨틱 갭을 줄이기 위한 딥러닝과 행위 온톨로지의 결합 기반 이미지 검색 (Image retrieval based on a combination of deep learning and behavior ontology for reducing semantic gap)

  • 이승;정혜욱
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제9권11호
    • /
    • pp.1133-1144
    • /
    • 2019
  • 최근 스마트 기기의 발전으로 인터넷상에 존재하는 이미지 데이터의 양이 급속하게 증가하는 상황에서 효과적인 이미지 검색을 위한 다양한 방법들이 연구되고 있다. 기존의 이미지 검색 방법들은 이미지에 존재하는 물체들을 단순하게 검출하여 각 물체들의 라벨 정보에 근거한 검색을 수행하기 때문에 사용자가 원하는 이미지와 검색 결과로 얻은 이미지 간에 의미적 차이인 시맨틱 갭(Semantic Gap)이 발생된다. 이미지 검색에서 발생하는 시맨틱 갭을 줄이기 위해, 본 논문에서는 딥러닝 기반의 다중 객체 분류 모듈과 사람의 행위를 분류하는 모듈을 연결하고, 이 모듈들에 행위 온톨로지를 결합하였다. 즉, 딥러닝과 행위 온톨로지의 결합을 기반으로 객체들 간의 연관성을 고려한 이미지 검색 시스템을 제안한다. 이미지에 포함된 동적인 행위를 고려하기 위해 Walking과 Running 데이터를 이용하여 실험한 결과를 분석하였다. 제안한 방법은 향후 이미지 검색 결과의 정확도를 높일 수 있는 영상의 자동 주석 생성 연구에 확장하여 적용할 수 있다.

Similar Image Retrieval Technique based on Semantics through Automatic Labeling Extraction of Personalized Images

  • Jung-Hee, Seo
    • Journal of information and communication convergence engineering
    • /
    • 제22권1호
    • /
    • pp.56-63
    • /
    • 2024
  • Despite the rapid strides in content-based image retrieval, a notable disparity persists between the visual features of images and the semantic features discerned by humans. Hence, image retrieval based on the association of semantic similarities recognized by humans with visual similarities is a difficult task for most image-retrieval systems. Our study endeavors to bridge this gap by refining image semantics, aligning them more closely with human perception. Deep learning techniques are used to semantically classify images and retrieve those that are semantically similar to personalized images. Moreover, we introduce a keyword-based image retrieval, enabling automatic labeling of images in mobile environments. The proposed approach can improve the performance of a mobile device with limited resources and bandwidth by performing retrieval based on the visual features and keywords of the image on the mobile device.

자동 주석 갱신 및 멀티 분할 색상 히스토그램 기법을 이용한 의미기반 비디오 검색 시스템 (A Semantic-based Video Retrieval System using Method of Automatic Annotation Update and Multi-Partition Color Histogram)

  • 이광형;전문석
    • 한국통신학회논문지
    • /
    • 제29권8C호
    • /
    • pp.1133-1141
    • /
    • 2004
  • 비디오 데이터를 효율적으로 처리하기 위해서는 비디오 데이터가 가지고 있는 내용에 대한 정보를 데이터베이스에 저장하고 사용자들의 다양한 질의를 처리할 수 있는 의미기반 검색 기법이 요구된다. 본 논문에서는 주석기반 검색과 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색 시스템을 제안한다. 사용자의 기본적인 질의와 질의에 의해 추출된 키 프레임의 이미지를 선택함으로써 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 질의 이미지가 되어 제안하는 특징기반 검색기법을 통해 가장 유사한 키 프레임을 검색한다. 설계하고 구현한 시스템은 실험을 통한 성능평가에서 90% 이상의 높은 정확도를 보였다.

모바일 환경에서 의미 기반 이미지 어노테이션 및 검색 (Semantic Image Annotation and Retrieval in Mobile Environments)

  • 노현덕;서광원;임동혁
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1498-1504
    • /
    • 2016
  • The progress of mobile computing technology is bringing a large amount of multimedia contents such as image. Thus, we need an image retrieval system which searches semantically relevant image. In this paper, we propose a semantic image annotation and retrieval in mobile environments. Previous mobile-based annotation approaches cannot fully express the semantics of image due to the limitation of current form (i.e., keyword tagging). Our approach allows mobile devices to annotate the image automatically using the context-aware information such as temporal and spatial data. In addition, since we annotate the image using RDF(Resource Description Framework) model, we are able to query SPARQL for semantic image retrieval. Our system implemented in android environment shows that it can more fully represent the semantics of image and retrieve the images semantically comparing with other image annotation systems.