KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.9
/
pp.2464-2482
/
2024
The semantic understanding of numbers requires association with context. However, powerful neural networks overfit spurious correlations between context and numbers in training corpus can lead to the occurrence of contextual bias, which may affect the network's accurate estimation of number magnitude when making inferences in real-world data. To investigate the resilience of current methodologies against contextual bias, we introduce a novel out-of-distribution (OOD) numerical question-answering (QA) dataset that features specific correlations between context and numbers in the training data, which are not present in the OOD test data. We evaluate the robustness of different numerical encoding and decoding methods when confronted with contextual bias on this dataset. Our findings indicate that encoding methods incorporating more detailed digit information exhibit greater resilience against contextual bias. Inspired by this finding, we propose a digit-aware position embedding strategy, and the experimental results demonstrate that this strategy is highly effective in improving the robustness of neural networks against contextual bias.
Recently, as word embedding has shown excellent performance in various tasks of deep learning-based natural language processing, researches on the advancement and application of word, sentence, and document embedding are being actively conducted. Among them, cross-language transfer, which enables semantic exchange between different languages, is growing simultaneously with the development of embedding models. Academia's interests in vector alignment are growing with the expectation that it can be applied to various embedding-based analysis. In particular, vector alignment is expected to be applied to mapping between specialized domains and generalized domains. In other words, it is expected that it will be possible to map the vocabulary of specialized fields such as R&D, medicine, and law into the space of the pre-trained language model learned with huge volume of general-purpose documents, or provide a clue for mapping vocabulary between mutually different specialized fields. However, since linear-based vector alignment which has been mainly studied in academia basically assumes statistical linearity, it tends to simplify the vector space. This essentially assumes that different types of vector spaces are geometrically similar, which yields a limitation that it causes inevitable distortion in the alignment process. To overcome this limitation, we propose a deep learning-based vector alignment methodology that effectively learns the nonlinearity of data. The proposed methodology consists of sequential learning of a skip-connected autoencoder and a regression model to align the specialized word embedding expressed in each space to the general embedding space. Finally, through the inference of the two trained models, the specialized vocabulary can be aligned in the general space. To verify the performance of the proposed methodology, an experiment was performed on a total of 77,578 documents in the field of 'health care' among national R&D tasks performed from 2011 to 2020. As a result, it was confirmed that the proposed methodology showed superior performance in terms of cosine similarity compared to the existing linear vector alignment.
Kim, Hakdong;Go, Myunghyun;Lim, Heonyeong;Lee, Yurim;Jee, Minkyu;Kim, Wonil
Journal of Broadcast Engineering
/
v.24
no.1
/
pp.48-57
/
2019
The purpose of this study is to understand the intention of the inquirer from the single text type question in Goal-oriented dialogue. Goal-Oriented Dialogue system means a dialogue system that satisfies the user's specific needs via text or voice. The intention analysis process is a step of analysing the user's intention of inquiry prior to the answer generation, and has a great influence on the performance of the entire Goal-Oriented Dialogue system. The proposed model was used for a daily chemical products domain and Korean text data related to the domain was used. The analysis is divided into a speech-act which means independent on a specific field concept-sequence and which means depend on a specific field. We propose a classification method using the word embedding model and the CNN as a method for analyzing speech-act and concept-sequence. The semantic information of the word is abstracted through the word embedding model, and concept-sequence and speech-act classification are performed through the CNN based on the semantic information of the abstract word.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.1
/
pp.7-14
/
2022
Sensor Registry System (SRS) has been devised for maintaining semantic interoperability of data on heterogeneous sensor networks. SRS measures the connectability of the mobile device to ambient sensors based on positions and only provides metadata of sensors that may be successfully connected. The step of identifying the ambient sensors which can be successfully connected is called sensor filtering. Improving the performance of sensor filtering is one of the core issues of SRS research. In reality, GPS sometimes shows the wrong position and thus leads to failed sensor filtering. Therefore, this paper proposes a new sensor filtering strategy using geographical embedding and neural network-based path prediction. This paper also evaluates the service provision rate with the Monte Carlo approach. The empirical study shows that the proposed method can compensate for position abnormalities and is an effective model for sensor filtering in SRS.
In recent years, as many people post their interests on social media or store documents in digital form due to the development of the internet and computer technologies, the amount of text data generated has exploded. Accordingly, the demand for technology to create valuable information from numerous document data is also increasing. In this study, through statistical techniques, we investigate how the meanings of Korean words change over time by using the presidential speech records and newspaper articles public data. Using this, we present a strategy that can be utilized in the study of the synchronic change of Hangeul. The purpose of this study is to deviate from the study of the theoretical language phenomenon of Hangeul, which was studied by the intuition of existing linguists or native speakers, to derive numerical values through public documents that can be used by anyone, and to explain the phenomenon of changes in the meaning of words.
In the document extraction summary study, various methods for selecting important sentences based on the relationship between sentences were proposed. In the Korean document summary using the summation similarity of sentences, the summation similarity of the sentences was regarded as the amount of sentence information, and the summary sentences were extracted by selecting important sentences based on this. However, the problem is that it does not take into account the various importance that each sentence contributes to the entire document. Therefore, in this study, we propose a document extraction summary method that provides a summary by selecting important sentences based on the amount of quantitative and semantic information in the sentence. As a result, the extracted sentence agreement was 58.56% and the ROUGE-L score was 34, which was superior to the method using only the combined similarity. Compared to the deep learning-based method, the extraction method is lighter, but the performance is similar. Through this, it was confirmed that the method of compressing information based on semantic similarity between sentences is an important approach in document extraction summary. In addition, based on the quickly extracted summary, the document generation summary step can be effectively performed.
Labeled graphs are used to represent entities, their relationships, and their structures in real data such as knowledge graphs and protein interactions. With the rapid development of IT and the explosive increase in data, there has been a need for a subgraph matching technology to provide information that the user is interested in. In this paper, we propose an approximate Top-k labeled subgraph matching scheme that considers the semantic similarity of labels and the difference in graph structure. The proposed scheme utilizes a learning model using FastText in order to consider the semantic similarity of a label. In addition, the label similarity graph(LSG) is used for approximate subgraph matching by calculating similarity values between labels in advance. Through the LSG, we can resolve the limitations of the existing schemes that subgraph expansion is possible only if the labels match exactly. It supports structural similarity for a query graph by performing searches up to 2-hop. Based on the similarity value, we provide k subgraph matching results. We conduct various performance evaluations in order to show the superiority of the proposed scheme.
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.116-121
/
2017
cQA(Community-based Question Answering) 시스템은 온라인 커뮤니티를 통해 사용자들이 질문을 남기고 답변을 작성할 수 있도록 만들어진 시스템이다. 신규 질문이 인입되면, 기존에 축적된 cQA 저장소에서 해당 질문과 가장 유사한 질문을 검색하고, 그 질문에 대한 답변을 신규 질문에 대한 답변으로 대체할 수 있다. 하지만, 키워드 매칭을 사용하는 전통적인 검색 방식으로는 문장에 내재된 의미들을 이용할 수 없다는 한계가 있다. 이를 극복하기 위해서는 의미적으로 동일한 문장들로 학습이 되어야 하지만, 이러한 데이터를 대량으로 확보하기에는 어려움이 있다. 본 논문에서는 질문이 제목과 내용으로 분리되어 있는 대량의 cQA 셋에서, 질문 제목과 내용을 의미 벡터 공간으로 사상하고 두 벡터의 상대적 거리가 가깝게 되도록 학습함으로써 의사(pseudo) 유사 의미의 성질을 내재화 하였다. 또한, 질문 제목과 내용의 의미 벡터 표현(representation)을 위하여, semi-training word embedding과 CNN(Convolutional Neural Network)을 이용한 딥러닝 기법을 제안하였다. 유사 질문 검색 실험 결과, 제안 모델을 이용한 검색이 키워드 매칭 기반 검색보다 좋은 성능을 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.9
/
pp.4568-4584
/
2016
Steganography based on text generation has become a hot research topic in recent years. However, current text-generation methods which generate texts of normal style have either semantic or syntactic flaws. Note that texts of special genre, such as poem, have much simpler language model, less grammar rules, and lower demand for naturalness. Motivated by this observation, in this paper, we propose a text steganography that utilizes Markov chain model to generate Ci-poetry, a classic Chinese poem style. Since all Ci poems have fixed tone patterns, the generation process is to select proper words based on a chosen tone pattern. Markov chain model can obtain a state transfer matrix which simulates the language model of Ci-poetry by learning from a given corpus. To begin with an initial word, we can hide secret message when we use the state transfer matrix to choose a next word, and iterating until the end of the whole Ci poem. Extensive experiments are conducted and both machine and human evaluation results show that our method can generate Ci-poetry with higher naturalness than former researches and achieve competitive embedding rate.
심층 학습에 기반을 둔 통계적 언어모형에서 가장 중요한 작업은 단어의 분산 표현(Distributed Representation)이다. 단어의 분산 표현은 단어 자체가 가지는 의미를 다차원 공간에서 벡터로 표현하는 것으로서, 워드 임베딩(word embedding)이라고도 한다. 워드 임베딩을 이용한 심층 학습 기반 통계적 언어모형은 전통적인 통계적 언어모형과 비교하여 성능이 우수한 것으로 알려져 있다. 그러나 워드 임베딩 역시 자료 부족분제에서 벗어날 수 없다. 특히 학습데이터에 나타나지 않은 단어(unknown word)를 처리하는 것이 중요하다. 본 논문에서는 고품질 한국어 워드 임베딩을 위하여 단어의 의미적 계층정보를 이용한 워드 임베딩 방법을 제안한다. 기존연구에서 제안한 워드 임베딩 방법을 그대로 활용하되, 학습 단계에서 목적함수가 입력 단어의 하위어, 동의어를 반영하여 계산될 수 있도록 수정함으로써 단어의 의미적 계층청보를 반영할 수 있다. 본 논문에서 제안한 워드 임베딩 방법을 통해 생성된 단어 벡터의 유추검사(analog reasoning) 결과, 기존 방법보다 5%가 증가한 47.90%를 달성할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.