• Title/Summary/Keyword: Semantic Relation

Search Result 233, Processing Time 0.027 seconds

The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective (의미간의 유사도 연구의 패러다임 변화의 필요성-인지 의미론적 관점에서의 고찰)

  • Choi, Youngseok;Park, Jinsoo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.111-123
    • /
    • 2013
  • Semantic similarity/relatedness measure between two concepts plays an important role in research on system integration and database integration. Moreover, current research on keyword recommendation or tag clustering strongly depends on this kind of semantic measure. For this reason, many researchers in various fields including computer science and computational linguistics have tried to improve methods to calculating semantic similarity/relatedness measure. This study of similarity between concepts is meant to discover how a computational process can model the action of a human to determine the relationship between two concepts. Most research on calculating semantic similarity usually uses ready-made reference knowledge such as semantic network and dictionary to measure concept similarity. The topological method is used to calculated relatedness or similarity between concepts based on various forms of a semantic network including a hierarchical taxonomy. This approach assumes that the semantic network reflects the human knowledge well. The nodes in a network represent concepts, and way to measure the conceptual similarity between two nodes are also regarded as ways to determine the conceptual similarity of two words(i.e,. two nodes in a network). Topological method can be categorized as node-based or edge-based, which are also called the information content approach and the conceptual distance approach, respectively. The node-based approach is used to calculate similarity between concepts based on how much information the two concepts share in terms of a semantic network or taxonomy while edge-based approach estimates the distance between the nodes that correspond to the concepts being compared. Both of two approaches have assumed that the semantic network is static. That means topological approach has not considered the change of semantic relation between concepts in semantic network. However, as information communication technologies make advantage in sharing knowledge among people, semantic relation between concepts in semantic network may change. To explain the change in semantic relation, we adopt the cognitive semantics. The basic assumption of cognitive semantics is that humans judge the semantic relation based on their cognition and understanding of concepts. This cognition and understanding is called 'World Knowledge.' World knowledge can be categorized as personal knowledge and cultural knowledge. Personal knowledge means the knowledge from personal experience. Everyone can have different Personal Knowledge of same concept. Cultural Knowledge is the knowledge shared by people who are living in the same culture or using the same language. People in the same culture have common understanding of specific concepts. Cultural knowledge can be the starting point of discussion about the change of semantic relation. If the culture shared by people changes for some reasons, the human's cultural knowledge may also change. Today's society and culture are changing at a past face, and the change of cultural knowledge is not negligible issues in the research on semantic relationship between concepts. In this paper, we propose the future directions of research on semantic similarity. In other words, we discuss that how the research on semantic similarity can reflect the change of semantic relation caused by the change of cultural knowledge. We suggest three direction of future research on semantic similarity. First, the research should include the versioning and update methodology for semantic network. Second, semantic network which is dynamically generated can be used for the calculation of semantic similarity between concepts. If the researcher can develop the methodology to extract the semantic network from given knowledge base in real time, this approach can solve many problems related to the change of semantic relation. Third, the statistical approach based on corpus analysis can be an alternative for the method using semantic network. We believe that these proposed research direction can be the milestone of the research on semantic relation.

Korean Semantic Similarity Measures for the Vector Space Models

  • Lee, Young-In;Lee, Hyun-jung;Koo, Myoung-Wan;Cho, Sook Whan
    • Phonetics and Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.49-55
    • /
    • 2015
  • It is argued in this paper that, in determining semantic similarity, Korean words should be recategorized with a focus on the semantic relation to ontology in light of cross-linguistic morphological variations. It is proposed, in particular, that Korean semantic similarity should be measured on three tracks, human judgements track, relatedness track, and cross-part-of-speech relations track. As demonstrated in Yang et al. (2015), GloVe, the unsupervised learning machine on semantic similarity, is applicable to Korean with its performance being compared with human judgement results. Based on this compatability, it was further thought that the model's performance might most likely vary with different kinds of specific relations in different languages. An attempt was made to analyze them in terms of two major Korean-specific categories involved in their lexical and cross-POS-relations. It is concluded that languages must be analyzed by varying methods so that semantic components across languages may allow varying semantic distance in the vector space models.

Semantic Relation Extraction using Pattern Pairs Sharing a Term (용어를 공유하는 패턴 쌍을 이용한 의미 관계 추출)

  • Kim, Se-Jong;Lee, Yong-Hun;Lee, Jong-Hyeok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.221-225
    • /
    • 2009
  • Constructing an ontology using a mass corpus begins with an automatic semantic relation extraction. A general method regards words appearing between terms as patterns which are used to extract semantic relations. However, previous approaches consider only one sentence to extract a pattern, so they cannot extract semantic relations for terms in different sentences. This paper proposes a semantic relation extraction method using pairs of patterns sharing a term, where each pattern is extracted using one of the seed term pair satisfying the target relation. In our experiments, we achieved the accuracy 83.75% improving previous methods by 7.5% in is-${\alpha}$ relation and the accuracy 83.75% improved by 5% in part-of relation. We also present a possibility of improving the recall by the relative recall.

Research on Comparing System with Syntactic-Semantic Tree in Subjective-type Grading (주관식 문제 채점에서의 구문의미트리 비교 시스템에 대한 연구)

  • Kang, WonSeog
    • The Journal of Korean Association of Computer Education
    • /
    • v.20 no.5
    • /
    • pp.79-88
    • /
    • 2017
  • To upgrade the subjective question grading, we need the syntactic-semantic analysis to analyze syntatic-semantic relation between words in answering. However, since the syntactic-semantic tree has structural and semantic relation between words, we can not apply the method calculating the similarity between vectors. This paper suggests the comparing system with syntactic-semantic tree which has structural and semantic relation between words. In this thesis, we suggest similarity calculation principles for comparing the trees and verify the principles through experiments. This system will help the subjective question grading by comparing the trees and be utilized in distinguishing similar documents.

A Semantic Content Retrieval and Browsing System Based on Associative Relation in Video Databases

  • Bok Kyoung-Soo;Yoo Jae-Soo
    • International Journal of Contents
    • /
    • v.2 no.1
    • /
    • pp.22-28
    • /
    • 2006
  • In this paper, we propose new semantic contents modeling using individual features, associative relations and visual features for efficiently supporting browsing and retrieval of video semantic contents. And we implement and design a browsing and retrieval system based on the semantic contents modeling. The browsing system supports annotation based information, keyframe based visual information, associative relations, and text based semantic information using a tree based browsing technique. The retrieval system supports text based retrieval, visual feature and associative relations according to the retrieval types of semantic contents.

  • PDF

Interpretation of Noun Sequence using Semantic Information Extracted from Machine Readable Dictionary and Corpus (기계가독형사전과 코퍼스에서 추출한 의미정보를 이용한 명사열의 의미해석)

  • 이경순;김도완;김길창;최기선
    • Korean Journal of Cognitive Science
    • /
    • v.12 no.1_2
    • /
    • pp.11-24
    • /
    • 2001
  • The interpretation of noun sequence is to find semantic relation between the nouns in noun sequence. To interpret noun sequence, semantic knowledge about words and relation between words is required. In this thesis, we propose a method to interpret a semantic relation between nouns in noun sequence. We extract semantic information from an machine readable dictionary (MRD) and corpus using regular expressions. Based on the extracted information, semantic relation of noun sequence is interpreted. And. we use verb subcategorization information together with the semantic information from an MRD and corpus. Previous researches use semantic knowledge extracted only from an MRD but our method uses an MRD. corpus. and subcategorizaton information to interpret noun sequences. Experimental result shows that our method improves the accuracy rate by +40.30% and the coverage rate by + 12.73% better than previous researches.

  • PDF

Research on the Hybrid Paragraph Detection System Using Syntactic-Semantic Analysis (구문의미 분석을 활용한 복합 문단구분 시스템에 대한 연구)

  • Kang, Won Seog
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.106-116
    • /
    • 2021
  • To increase the quality of the system in the subjective-type question grading and document classification, we need the paragraph detection. But it is not easy because it is accompanied by semantic analysis. Many researches on the paragraph detection solve the detection problem using the word based clustering method. However, the word based method can not use the order and dependency relation between words. This paper suggests the paragraph detection system using syntactic-semantic relation between words with the Korean syntactic-semantic analysis. This system is the hybrid system of word based, concept based, and syntactic-semantic tree based detection. The experiment result of the system shows it has the better result than the word based system. This system will be utilized in Korean subjective question grading and document classification.

Integrated Knowledge Bases of Semantic Networks for Automatic Translation of Ambiguous Words (단어의 자동번역을 위한 의미 네트워크의 통합 지식베이스)

  • Yoo-Jin Moon;Young-Ho Hwang
    • Journal of Information Technology Applications and Management
    • /
    • v.9 no.2
    • /
    • pp.71-80
    • /
    • 2002
  • Automatic language translation has greatly advanced due to the increased user needs and Information retrieval in WWW. This paper utilizes the integrated knowledge bases of noun and verb networks for automatic translation of ambiguous words in the Korean sentences, through the selectional restriction relation in the sentences. And this paper presents the method to verify validity of Korean noun semantic networks that are used for the construction of the selectional restriction relation by applying the networks to the syntactic and semantic properties Integration of Korean Noun Networks into the SENKOV system will provide the accurate and efficient knowledge bases for the semantic analysis of Korean NLP.

  • PDF

Extraction of ObjectProperty-UsageMethod Relation from Web Documents

  • Pechsiri, Chaveevan;Phainoun, Sumran;Piriyakul, Rapeepun
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1103-1125
    • /
    • 2017
  • This paper aims to extract an ObjectProperty-UsageMethod relation, in particular the HerbalMedicinalProperty-UsageMethod relation of the herb-plant object, as a semantic relation between two related sets, a herbal-medicinal-property concept set and a usage-method concept set from several web documents. This HerbalMedicinalProperty-UsageMethod relation benefits people by providing an alternative treatment/solution knowledge to health problems. The research includes three main problems: how to determine EDU (where EDU is an elementary discourse unit or a simple sentence/clause) with a medicinal-property/usage-method concept; how to determine the usage-method boundary; and how to determine the HerbalMedicinalProperty-UsageMethod relation between the two related sets. We propose using N-Word-Co on the verb phrase with the medicinal-property/usage-method concept to solve the first and second problems where the N-Word-Co size is determined by the learning of maximum entropy, support vector machine, and naïve Bayes. We also apply naïve Bayes to solve the third problem of determining the HerbalMedicinalProperty-UsageMethod relation with N-Word-Co elements as features. The research results can provide high precision in the HerbalMedicinalProperty-UsageMethod relation extraction.

Iterative learning system design for relation extraction and knowledge base population (관계 추출 및 지식베이스 확장을 위한 반복 학습 시스템 설계)

  • Jeong, Yong-Bin;Nam, Sang-Ha;Kim, Ji-Seong;Lee, Min-Ho;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.185-189
    • /
    • 2019
  • 관계추출기의 학습을 위해서는 많은 학습 데이터가 필요한데, 사람이 모으게 되면 많은 비용이 필요하여 원격 지도 학습을 이용한 데이터 수집이 많은 연구에서 사용되고 있다. 원격 지도 학습은 지식베이스를 기반으로 학습 데이터를 자동으로 만들어 내는 방식이기에 비용이 거의 들지 않지만, 지식베이스의 질과 양에 영향을 받는다. 본 연구는 원격 지도 학습을 기본으로 관계추출기의 성능을 향상 시키고, 지식베이스를 확장하는 방안으로 반복학습을 제안한다. 실험을 적은 비용으로 빠르게 진행하기 위해 반복학습을 자동화 하는 시스템을 설계하여 실험을 하였고, 이 시스템으로 관계추출기의 성능이 향상 될 수 있는 가능성을 보였으며, 반복학습을 통한 지식베이스의 확장 방안을 제시한다.

  • PDF