• Title/Summary/Keyword: Semantic Network Analysis

Search Result 415, Processing Time 0.028 seconds

GOVERNMENT-CIVIC GROUP CONFLICTS AND COMMUNICATION STRATEGY: A TEXT ANALYSIS OF TV DEBATES ON KOREA'S IMPORT OF U.S. BEEF

  • Cho, Seong Eun;Choi, Myunggoon;Park, Han Woo
    • Journal of Contemporary Eastern Asia
    • /
    • v.11 no.1
    • /
    • pp.1-20
    • /
    • 2012
  • This study analyzes messages from Korean TV debates on the conflict over U.S. beef imports and the process of negotiations over the imports in 2008. The authors have conducted a content analysis and a semantic network analysis by using KrKwic and CONCOR. The data was drawn from nine TV debates aired by three major TV networks in Korea (MBC, KBS, and SBS) from 27 April 27 2008 to 6 July 2008. The results indicate substantial differences in the semantic structure between arguments by the government and those by civic groups. We also investigated the relationship between the terms frequently used by both sides (i.e., the government and civic groups), and the terms used exclusively by one side. There was a gradual increase in the number of terms frequently used by both sides over time, from the formation of the conflict to its escalation to its resolution. The results indicate the possibility of general agreement in conflict situations.

Relations between Reputation and Social Media Marketing Communication in Cryptocurrency Markets: Visual Analytics using Tableau

  • Park, Sejung;Park, Han Woo
    • International Journal of Contents
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Visual analytics is an emerging research field that combines the strength of electronic data processing and human intuition-based social background knowledge. This study demonstrates useful visual analytics with Tableau in conjunction with semantic network analysis using examples of sentiment flow and strategic communication strategies via Twitter in a blockchain domain. We comparatively investigated the sentiment flow over time and language usage patterns between companies with a good reputation and firms with a poor reputation. In addition, this study explored the relations between reputation and marketing communication strategies. We found that cryptocurrency firms more actively produced information when there was an increased public demand and increased transactions and when the coins' prices were high. Emotional language strategies on social media did not affect cryptocurrencies' reputations. The pattern in semantic representations of keywords was similar between companies with a good reputation and firms with a poor reputation. However, the reputable firms communicated on a wide range of topics and used more culturally focused strategies, and took more advantages of social media marketing by expanding their outreach to other social media networks. The visual big data analytics provides insights into business intelligence that helps informed policies.

A Study on Social Perceptions of Public Libraries Utilizing the sentiment analysis

  • Noh, Younghee;Kim, Dongseok
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.12 no.4
    • /
    • pp.41-65
    • /
    • 2022
  • This study would understand the overall perception of our society about public libraries, analyzing the texts related to public libraries, utilizing the semantic connection network & sentiment analysis. For this purpose, this study collected data from the last five years with keywords, 'Library' and 'Lifelong Learning Center' from January 1, 2016 through November 30, 2020 through the blogs and cafés of major domestic portal sites. With the collected data, text mining, centrality of keywords, network structure, structural equipotentiality, and sensitivity analyses were conducted. As a result of the analysis, First, 'reading' and 'book' were identified as representative keywords that form the social perception of public libraries. Second, it turned out that there were keywords related to the use of the library and the untact service due to the recent spread of COVID-19. Third, in seeking a plan for the development of public libraries through the keywords drawn to have positive meanings, it is necessary to create continuous services that can form a new image of the library, breaking away from the existing fixed role and image of the library and increase the convenience of use. Fourth, facilities and facilities for library services were recognized from a neutral point of view. Fifth, the spread of infectious diseases, social distancing, and temporary closure and closure of libraries are negatively related to public libraries, and awareness of librarians has been identified as negative keywords.

A Study of Consumer Perception on Fashion Show Using Big Data Analysis (빅데이터를 활용한 패션쇼에 대한 소비자 인식 연구)

  • Kim, Da Jeong;Lee, Seunghee
    • Journal of Fashion Business
    • /
    • v.23 no.3
    • /
    • pp.85-100
    • /
    • 2019
  • This study examines changes in consumer perceptions of fashion shows, which are critical elements in the apparel industry and a means to represent a brand's image and originality. For this purpose, big data in clothing marketing, text mining, semantic network analysis techniques were applied. This study aims to verify the effectiveness and significance of fashion shows in an effort to give directions for their future utilization. The study was conducted in two major stages. First, data collection with the key word, "fashion shows," was conducted across websites, including Naver and Daum between 2015 and 2018. The data collection period was divided into the first- and second-half periods. Next, Textom 3.0 was utilized for data refinement, text mining, and word clouding. The Ucinet 6.0 and NetDraw, were used for semantic network analysis, degree centrality, CONCOR analysis and also visualization. The level of interest in "models" was found to be the highest among the perception factors related to fashion shows in both periods. In the first-half period, the consumer interests focused on detailed visual stimulants such as model and clothing while in the second-half period, perceptions changed as the value of designers and brands were increasingly recognized over time. The findings of this study can be utilized as a tool to evaluate fashion shows, the apparel industry sectors, and the marketing methods. Additionally, it can also be used as a theoretical framework for big data analysis and as a basis of strategies and research in industrial developments.

A Study on the News Frame of COVID-19 Vaccine through Structural Topic Modeling and Semantic Network Analysis

  • Eun-Ji Yun;Bo-Young Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.5
    • /
    • pp.129-153
    • /
    • 2023
  • This study was conducted in the context of the Covid-19 pandemic by analyzing a large amount of press report frames regarding the Covid-19 vaccine which is of great public interest, in order to explore the role and direction of trusted media as core elements of crisis communication. The study period lasted for eight months beginning in November 2020 when the development of the Covid-19 vaccine was in progress until June 2021. Set-up as research subjects were the Chosun Ilbo, Joongang Ilbo, Dong-A Ilbo and Hankyoreh according to their public confidence rankings and number of readers.The analysis method used structured topic Modeling (STM) and semantic network analysis. As a result, based on a clear cluster of word structures and a central analysis value, a total of 64 relevant frames, 16 for each news company, were gathered. In the third phase a comparative analysis of the four news companies was carried out to verify the organizational degree of the frames and substantial differences.

A Model for Ranking Semantic Associations in a Social Network (소셜 네트워크에서 관계 랭킹 모델)

  • Oh, Sunju
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.3
    • /
    • pp.93-105
    • /
    • 2013
  • Much Interest has focused on social network services such as Facebook and Twitter. Previous research conducted on social network often emphasized the architecture of the social network that is the existence of path between any objects on network and the centrality of the object in the network. However, studies on the semantic association in the network are rare. Studies on searching semantic associations between entities are necessary for future business enhancements. In this research, the ontology based social network analysis is performed. A new method to search and rank relation sequences that consist of several relations between entities is proposed. In addition, several heuristics to measure the strength of the relation sequences are proposed. To evaluate the proposed method, an experiment was performed. A group of social relationships among the university and organizations are constructed. Some social connections are searched using the proposed ranking method. The proposed method is expected to be used to search the association among entities in ontology based knowledge base.

A Study of Comparison between Cruise Tours in China and U.S.A through Big Data Analytics

  • Shuting, Tao;Kim, Hak-Seon
    • Culinary science and hospitality research
    • /
    • v.23 no.6
    • /
    • pp.1-11
    • /
    • 2017
  • The purpose of this study was to compare the cruise tours between China and U.S.A. through the semantic network analysis of big data by collecting online data with SCTM (Smart crawling & Text mining), a data collecting and processing program. The data analysis period was from January $1^{st}$, 2015 to August $15^{th}$, 2017, meanwhile, "cruise tour, china", "cruise tour, usa" were conducted to be as keywords to collet related data and packaged Netdraw along with UCINET 6.0 were utilized for data analysis. Currently, Chinese cruisers concern on the cruising destinations while American cruisers pay more attention on the onboard experience and cruising expenditure. After performing CONCOR (convergence of iterated correlation) analysis, for Chinese cruise tour, there were three clusters created with domestic destinations, international destinations and hospitality tourism. As for American cruise tour, four groups have been segmented with cruise expenditure, onboard experience, cruise brand and destinations. Since the cruise tourism of America was greatly developed, this study also was supposed to provide significant and social network-oriented suggestions for Chinese cruise tourism.

Research trends over 10 years (2010-2021) in infant and toddler rearing behavior by family caregivers in South Korea: text network and topic modeling

  • In-Hye Song;Kyung-Ah Kang
    • Child Health Nursing Research
    • /
    • v.29 no.3
    • /
    • pp.182-194
    • /
    • 2023
  • Purpose: This study analyzed research trends in infant and toddler rearing behavior among family caregivers over a 10-year period (2010-2021). Methods: Text network analysis and topic modeling were employed on data collected from relevant papers, following the extraction and refinement of semantic morphemes. A semantic-centered network was constructed by extracting words from 2,613 English-language abstracts. Data analysis was performed using NetMiner 4.5.0. Results: Frequency analysis, degree centrality, and eigenvector centrality all revealed the terms ''scale," ''program," and ''education" among the top 10 keywords associated with infant and toddler rearing behaviors among family caregivers. The keywords extracted from the analysis were divided into two clusters through cohesion analysis. Additionally, they were classified into two topic groups using topic modeling: "program and evaluation" (64.37%) and "caregivers' role and competency in child development" (35.63%). Conclusion: The roles and competencies of family caregivers are essential for the development of infants and toddlers. Intervention programs and evaluations are necessary to improve rearing behaviors. Future research should determine the role of nurses in supporting family caregivers. Additionally, it should facilitate the development of nursing strategies and intervention programs to promote positive rearing practices.

Comparison of Recommendation Using Social Network Analysis with Collaborative Filtering in Social Network Sites (SNS에서 사회연결망 기반 추천과 협업필터링 기반 추천의 비교)

  • Park, Sangun
    • Journal of Information Technology Services
    • /
    • v.13 no.2
    • /
    • pp.173-184
    • /
    • 2014
  • As social network services has become one of the most successful web-based business, recommendation in social network sites that assist people to choose various products and services is also widely adopted. Collaborative Filtering is one of the most widely adopted recommendation approaches, but recommendation technique that use explicit or implicit social network information from social networks has become proposed in recent research works. In this paper, we reviewed and compared research works about recommendation using social network analysis and collaborative filtering in social network sites. As the results of the analysis, we suggested the trends and implications for future research of recommendation in SNSs. It is expected that graph-based analysis on the semantic social network and systematic comparative analysis on the performances of social filtering and collaborative filtering are required.

Disambiguation of Homograph Suffixes using Lexical Semantic Network(U-WIN) (어휘의미망(U-WIN)을 이용한 동형이의어 접미사의 의미 중의성 해소)

  • Bae, Young-Jun;Ock, Cheol-Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.1
    • /
    • pp.31-42
    • /
    • 2012
  • In order to process the suffix derived nouns of Korean, most of Korean processing systems have been registering the suffix derived nouns in dictionary. However, this approach is limited because the suffix is very high productive. Therefore, it is necessary to analyze semantically the unregistered suffix derived nouns. In this paper, we propose a method to disambiguate homograph suffixes using Korean lexical semantic network(U-WIN) for the purpose of semantic analysis of the suffix derived nouns. 33,104 suffix derived nouns including the homograph suffixes in the morphological and semantic tagged Sejong Corpus were used for experiments. For the experiments first of all we semantically tagged the homograph suffixes and extracted root of the suffix derived nouns and mapped the root to nodes in the U-WIN. And we assigned the distance weight to the nodes in U-WIN that could combine with each homograph suffix and we used the distance weight for disambiguating the homograph suffixes. The experiments for 35 homograph suffixes occurred in the Sejong corpus among 49 homograph suffixes in a Korean dictionary result in 91.01% accuracy.