• 제목/요약/키워드: Self-tuning PID Control

검색결과 96건 처리시간 0.027초

신경망을 이용한 이동 로봇의 실시간 고속 정밀제어 (High Speed Precision Control of Mobile Robot using Neural Network in Real Time)

  • 주진화;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제5권1호
    • /
    • pp.95-104
    • /
    • 1999
  • In this paper we propose a fast and precise control algorithm for a mobile robot, which aims at the self-tuning control applying two multi-layered neural networks to the structure of computed torque method. Through this algorithm, the nonlinear terms of external disturbance caused by variable task environments and dynamic model errors are estimated and compensated in real time by a long term neural network which has long learning period to extract the non-linearity globally. A short term neural network which has short teaming period is also used for determining optimal gains of PID compensator in order to come over the high frequency disturbance which is not known a priori, as well as to maintain the stability. To justify the global effectiveness of this algorithm where each of the long term and short term neural networks has its own functions, simulations are peformed. This algorithm can also be utilized to come over the serious shortcoming of neural networks, i.e., inefficiency in real time.

  • PDF

Immune Algorithms Based 2-DOF Controller Design and Tuning For Power Stabilizer

  • Kim, Dong-Hwa;Park, Jin-Ill
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2278-2282
    • /
    • 2003
  • In this paper the structure of 2-DOF controller based on artificial immune network algorithms has been suggested for nonlinear system. Up to present time, a number of structures of the 2-DOF controllers are considered as 2-DOF (2-Degrees Of Freedom) control functions. However, a general view is provided that they are the special cases of either the state feedback or the modification of PID controllers. On the other hand, the immune network system possesses a self organizing and distributed memory, also it has an adaptive function by feed back law to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation, since antibody recognizes specific antigens which are the foreign substances that invade living creatures. Therefore, it can provide optimal solution to external environment. Simulation results by immune based 2-DOF controller reveal that immune algorithm is an effective approach to search for 2-DOF controller.

  • PDF

16 bit CPU와 Modula-2 언어를 사용한 6측 산업용 로보트의 디지탈 제어기 제작에 관한 연구 (Design of digital controller of six degree of freedom industrial robot using 16 bit CPU and modula-2 language)

  • 이주장;김양한;윤형우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.10-13
    • /
    • 1987
  • The main work of this paper are the manufacture of six degree of freedom industrial robot control hardware of 16 bit CPU and the development of five motion control software. The work would draw on KIT of Robotics Laboratory whose extensive experience in these areas; in particular the 68000 assembler and Modula-2 languages, and existing robot control systems. We found that this controller is good for the robot controller of PID types. But, for the use of self-tuning algorithms and real time calculations we need 32 bit CPU robot controller such as MC 68020 microprocessor.

  • PDF

유전알고리즘을 이용한 정교한 자기동조 퍼지 제어기의 설계 (Design of Sophisticated Self-Tuning Fuzzy Logic Controllers Using Genetic Algorithms)

  • 황용원;김낙교;남문현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.509-511
    • /
    • 1998
  • Design of fuzzy logic controllers encounters difficulties in the selection of optimized membership function and fuzzy rule base, which is traditionally achieved by tedious trial-and-error process. In this paper We proposed a new method to generate fuzzy logic controllers throught genetic algorithm(GA). The controller design space is coded in base-7 strings chromosomes, where each bit gene matches the 7 discrete fuzzy value. The developed approach is subsequently applied to the design of proportional plus integral type fuzzy controller for a do-servo motor control system. It was presented in discrete fuzzy linguistic value, and used a membership function with Gaussian curve. The performance of this control system is demonstrated higher than that of a conventional PID controller and fuzzy logic controller(FLC).

  • PDF

로보트 구동용 직류서보전동기의 제어기 (Controller of DC Servo Motor for Robot Drive)

  • 김평호;임양수;차인수;박해암;백형래
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.870-872
    • /
    • 1993
  • With the using the microprocessor, this paper presents DC servo motor control characteristics by Self-Tuning PID controller and considers position control response with controller of DC servo motor for robot drive. As this system is supported by a channel, it is considered to enough application effect in industry region such as needing multi joint robot and precision parallel driving.

  • PDF

유전알고리즘을 이용한 자기동조 퍼지 제어기의 설계 (Design of Self-Tuning Fuzzy Logic Controllers using Genetic Algorithms)

  • 서재근;김태언;권혁진;김낙교;남문헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1374-1376
    • /
    • 1996
  • In this paper We proposed a new method to generate fuzzy logic controllers through genetic algorithm(GA). In designing of fuzzy logic controllers encounters difficulties in the selection of optimized member-ship functions, gains and rule base, which is conventionally achieved by a tedious trial-and-error process. This paper develops genetic algorithms for automatic design of high performance fuzzy logic controllers which can overcome nonlinearities in many engineering control applications. The rule-base is coded in base-7 strings by generated from random function. Which can be presented in discrete fuzzy linguistic value, and using membership function with Gaussian curve. To verify the validity of this fuzzy logic controller it is compared with conventional fuzzy logic controller(FLC) and PID controller.

  • PDF