• Title/Summary/Keyword: Self-starter solution

Search Result 2, Processing Time 0.017 seconds

Acoustic parabolic equation model with a directional source (방향성 있는 음원이 적용된 음향 포물선 방정식 모델)

  • Lee, Keunhwa;Na, Youngnam;Son, Su-Uk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The acoustic parabolic equation method in the ocean is an efficient technique to calculate the acoustic field in the range-dependent environment, emanating from a point source. However, we often need to use the directional source with a main beam in the practical problem. In this paper, we present two methods to implement the directional source in the acoustic parabolic equation code easily. One is simply to filter the Delta function idealized as an omni-directional point source. Another method is based on the rational filtering of the self-starter solution. It has a limitation not to separate the up-going and the down-going wave for the depth, but would be useful in implementing the mode propagation. Numerical examples for validation are given in the Pekeris environment and the deep sea environment.

Self-Identification of Boundary's Nodes in Wireless Sensor Networks

  • Moustafa, Kouider Elouahed;Hafid, Haffaf
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.128-140
    • /
    • 2017
  • The wireless sensor networks (WSNs) became a very essential tool in borders and military zones surveillance, for this reason specific applications have been developed. Surveillance is usually accomplished through the deployment of nodes in a random way providing heterogeneous topologies. However, the process of the identification of all nodes located on the network's outer edge is very long and energy-consuming. Before any other activities on such sensitive networks, we have to identify the border nodes by means of specific algorithms. In this paper, a solution is proposed to solve the problem of energy and time consumption in detecting border nodes by means of node selection. This mechanism is designed with several starter nodes in order to reduce time, number of exchanged packets and then, energy consumption. This method consists of three phases: the first one is to detect triggers which serve to start the mechanism of boundary nodes (BNs) detection, the second is to detect the whole border, and the third is to exclude each BN from the routing tables of all its neighbors so that it cannot be used for the routing.