• 제목/요약/키워드: Self-propagating High-temperature Synthesis (SHS) reaction

검색결과 69건 처리시간 0.022초

BSCCO Superconducting Powder by SHS

  • Soh, Dea-Wha;Cho, Yong-Joon;Korobova, N.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.99-102
    • /
    • 2002
  • The BSCCO superconductor materials of using Self-propagating High-temperature Synthesis (SHS) were studied. Mechano-chemical activation - as a pre-treatment of the reactants mixture - strongly influences the kinetic parameters, the reaction mechanism, and the composition and structure of the final product. In this paper as an effort for fabricating the SHSed BSCCO superconductor powder SHS method was considered to application in the synthesis of superconducting materials.

  • PDF

기계적 합금화과정에서의 in situ 열분석에 의한 Ti-25.0~37.5at%Si 분말의 합성거동 (Synthesis Behavior of Ti-25.0~37.5at%Si Powders by In situ Thermal Analysis during Mechanical Alloying)

  • 변창섭;현창용;김동관
    • 한국재료학회지
    • /
    • 제14권5호
    • /
    • pp.305-309
    • /
    • 2004
  • Mechanical alloying (MA) of Ti-25.0~37.5at%Si powders was carried out in a high-energy ball mill, and in situ thermal analysis was also made during MA. In order to classify the synthesis behavior of the powders with respect to at%Si, the synthesis behavior during MA was investigated by in situ thermal analysis and X-ray diffraction (XRD). In situ thermal analysis curves and XRD patterns of Ti-25.0~26.1at%Si powders showed that there were no peaks during MA, indicating $Ti_{5}$ $Si_3$ was synthesised by a slow reaction of solid state diffusion. Those of Ti-27.1~37.5at%Si powders, however, showed that there were exothermic peaks during MA, indicating $_Ti{5}$ $Si_3$ and$ Ti_3$Si phase formation by a rapid exothermic reaction of self-propagating high-temperature synthesis (SHS). For Ti-27.1~37.5at%Si powders, the critical milling times for SHS decreased from 38.1 to 18.5 min and the temperature rise, ΔT (= peak temperature - onset temperature) increased form $19.5^{\circ}C$ to $26.7^{\circ}C$ as at%Si increased. The critical composition of Si for SHS reaction was found to be 27.1at% and the critical value of the negative heat of formation of Ti-27.1at%Si to be -1.32 kJ/g.

자전연소합성법 및 교반주조 공정으로 제조된 TiC/Mg 금속복합재료의 특성연구 (Characterization of TiC/Mg Composites Fabricated by in-situ Self-propagating High-temperature Synthesis followed by Stir Casting Process)

  • 이은경;조일국
    • Composites Research
    • /
    • 제33권5호
    • /
    • pp.256-261
    • /
    • 2020
  • 본 연구에서는 Al-Ti-C 반응계의 점화온도에 대해 고찰하고, 자전연소합성법 및 교반주조 공정을 통해 TiC/Mg 금속복합재료를 제조하여 미세조직 및 기계적 특성을 분석하였다. 0, 10, 20, 30 vol.% TiC 입자가 균일하게 분산된 Mg 복합재료를 제조하였고, 강화재의 양이 증가할수록 기지 대비 우수한 압축강도 및 내마모특성을 보였다. 이는 in-situ 자전연소합성법에 의해 결함이나 불순물 등의 오염이 적은 TiC/Mg 금속복합재료 제조로 기지에서 강화재로의 효과적인 하중 전달에 의한 것으로 판단된다.

SHS법에 의한 $TiB_2-Al_2O_3$계 복합물의 합성 및 상압소결에 관한 연구 (Synthesis of $TiB_2-Al_2O_3$ Composite by Self-Propagating High Temperature Synthesis (SHS) and Its Pressureless Sintering)

  • 최상욱;조동수;김세용;남건태
    • 한국세라믹학회지
    • /
    • 제31권5호
    • /
    • pp.552-560
    • /
    • 1994
  • A composite of TiB2-Al2O3 system was successfully prepared from a mixture of TiO2, B2O3, and Al by self-propagating high temperature synthesis (SHS) with a novel characteristic, utilizing the internal oxidation heat of aluminium metal of the mixture, instead of by a conventional technique, externally heating a mixture of Ti, B and Al2O3. From a mixture with B/Ti molar ratio of =2.0, pure two phases of TiB2 and $\alpha$-Al2O3 with good crystallinity and small, uniform sizes were formed. However, when the B/Ti molar ratio of the mixture goes to a value less than 2.0, in addition to the above main minerals, a small smounts of metastable phases such as TiB and Ti3B4 were formed. It was found that about 60%, the optimum green density of compacts gave their highest reaction rate and temperature during SHS process. TiB2-Al2O3 system composite with B/Ti molar ratio of =2.0 could be pressurelessly sintered even at 190$0^{\circ}C$ under Ar gas flows without any addition of sintering aids, showing their good properties such as 91.2% in relative density, 2750 kgf/$\textrm{mm}^2$ in Vickers hardness and 2620 kgf/$\textrm{cm}^2$ in flexural strength.

  • PDF

기계적 합금화과정에서의 in situ 열분석에 의한 Ti-50.0~66.7at%Si 분말의 합성거동 (Synthesis Behavior of Ti-50.0 ~ 66.7at%Si Powders by In situ Thermal Analysis during Mechanical Alloying)

  • 변창섭;이상호;이원희;현창용;김동관
    • 한국재료학회지
    • /
    • 제14권5호
    • /
    • pp.310-314
    • /
    • 2004
  • Mechanical alloying (MA) of Ti-50.0~66.7at%Si powders was carried out in a high-energy ball mill, and in situ thermal analysis was also made during MA. In order to classify the synthesis behavior of the powders with respect to at%Si, the synthesis behavior during MA was investigated by in situ thermal analysis and X-ray diffraction (XRD). In situ thermal analysis curves and XRD patterns of Ti-50.0~59.6at%Si powders showed that there were exothermic peaks during MA, indicating TiSi, $TiS_2$, and $Ti_{5}$ $Si_4$ phase formation by a rapid exothermic reaction of self-propagating high-temperature synthesis (SHS). Those of Ti-59.8~66.7 at%Si powders, however, showed that there were no peaks during MA, indicating any Ti silicide was not synthesised until MA 240 min. For Ti-50.0~59.6at%Si powders, the critical milling times for SHS increased from 34.5 min to 89.5 min and the temperature rise, $\Delta$T (=peak temperature-onset temperature) decreased form $26.2^{\circ}C$ to $17.1^{\circ}C$ as at%Si increased. The critical composition of Si for SHS reaction was found to be 59.6at% and the critical value of the negative heat of formation of Ti-59.6at%Si to be -1.48 kJ/g.

이규화 몰리브덴-텅스텐의 자전 고온 합성 반응 모델링 (Mathematical Modeling of Self-propagating High Temperature Synthesis of Molybdenum- Tungstenb Disilicide)

  • 연순화;장대규;이철경
    • 한국재료학회지
    • /
    • 제11권3호
    • /
    • pp.164-170
    • /
    • 2001
  • 자전고온합성반응법을 이용하여 이규화 몰리브덴-텅스텐($Mo_{1-z}$ , $W_{z}$)$Si_2$을 합성하였다. 조성 (z)을 변화시켜 성형한 원통형 시편에 합성반응 중 전달되는 온도변화를 예측하기 위하여 시편의 중앙에 열전대를 삽입하였다. 반응 선단면이 열전대를 통과할 때 가장 높은 반응온도를 보이고 이것을 단열반응 온도라 간주하였다. 따라서 본 연구에서는 이러한 온도변화를 예측하기 위하여 자전조온합성반응의 모델링을 계시하고자 하였으며, 실험을 통하여 측정한 반응온도 분포곡선의 거동을 비교하였다. 각각의 시료에 대한 실험결과 측정된 반응속도는 약 2.14~1.35mm/sec, 반응온도는 1883K~1507K의 간을 보였다. 두 항 모두 텅스텐의 함량이 증가함에 따라 감소하는 경향을 나타냈으며, 수치해석을 통하여 거의 유사한 반응온도를 얻었다. 시료의 초기온도를 증가시킬 경우 반응온도는 증가함이 예측되었고, z=0.5인 시료에 대하여 반응온도가 1900k 이상이 되기 위해서는 약 800K-900K의 예열이 필요하였다.

  • PDF

마이크로파를 이용한 SHS 방법에 의한 분말의 산화-환원반응 (Microwave Induced Reduction/Oxidation Reaction by SHS Technique)

  • 김석범
    • 한국결정학회지
    • /
    • 제9권1호
    • /
    • pp.44-47
    • /
    • 1998
  • 가정용 2.45GHz 마이크로파 오븐을 사용하여 A1 금속분말과 SiO2 분말간에 SHS방법에 의하여 산화/환원 반응을 통한 Al2O3 분말과 Si분말간의 복합체를 얻을 수 있었다. 분말간의 반응을 일으키기 위한 온도까지 승온시키기 위하여는 SiC 분말을 susceptor로 이용한 마이크로파 복합가열(Microwave Hybrid Heating)방법을 사용하여 분당 100℃의 승온 속도로 가열하였으며 반응은 850℃ 근처에서 일어났으며 가열 속도는 반응이 시작되면서 분당 200℃ 이상의 온도상승이 일어나면서 원하는 반응을 얻을 수 있었다.

  • PDF

이규화몰리브덴 고온발열체의 고온산화거동 (High-Temperature Oxidation of MoSi2 Heating Elements)

  • 서창열;장대가;심건주;조덕호;김원백
    • 한국재료학회지
    • /
    • 제6권1호
    • /
    • pp.57-66
    • /
    • 1996
  • MoSi2 heating elements were fabricated by sintering of MoSi2 powders which were synthesized through SHS(Self-propagating high-temperature synthesis). Their high-temperature oxidation behavior in air through SHS(Self-propagating high-temperature synthesis). Their high-temperature oxidation behavior on air at 1000-1600$^{\circ}C$ was investigated through a high-temperature X-ray diffractomer and isothermal heating in a muffle furnace. The thermal expansion of MoSi2 and SiO2 was studied by measuring their lattice parameters on heating. The linear expansion coeffcient of MoSi2 along c-axis was about 1.5 times larger than that along a-axis showing a strong thermal anisotropy. Few $\mu\textrm{m}$-thick Mo5Si3 layer was found beneath SiO2 layer suggesting that The major reaction products would be SiO2 and Mo5Si3. The Si-rich bentonite resulted in the faster growth of MoSi2 grains probably by enhancing the mass transport when they are melted during high-temperature oxidation.

  • PDF

저온 분사 공정을 통하여 형성된 Al/Ni 복합소재 코팅의 특성 평가 (Property Evaluation of Kinetic Sprayed Al-Ni Composite Coatings)

  • 변경준;김재익;이창희;김시조;이성
    • Journal of Welding and Joining
    • /
    • 제32권5호
    • /
    • pp.72-79
    • /
    • 2014
  • Shaped charge(SC) ammunition is a weapon that penetrates directly the target by made jet from metal liner on impacting at a target. In SC, the liner occupies significantly important role causing an explosion and penetration of the target. The Al-Ni composite coating was deposited on copper liner in a solid state via kinetic spraying to improve the explosive force. The mechanical properties, reactivity and microstructure were investigated to confirm the possibility of kinetic sprayed Al/Ni composite coating as a reactive liner material. Reactive liner using Al/Ni composite exhibited much enhanced reactivity than pure copper liner due to Self-propagating High-temperature Synthesis (SHS) reaction with significantly improved adhesive bond strength. Especially, among the Al/Ni composite coatings, AN11 (the Al versus Ni atomic percent ratio is 1:1) showed the greatest reactivity due to its widest reaction area between deposited Al and Ni.